
Interested in learning
more about security?

SANS Institute
InfoSec Reading Room
This paper is from the SANS Institute Reading Room site. Reposting is not permitted without express written permission.

Packer Analysis Report-Debugging and unpacking the
NsPack 3.4 and 3.7 packer.
l language (in this paper we will use C) so that an analyst can better understand the workings and purpose of
the packer....

Copyright SANS Institute
Author Retains Full Rights

AD

http://www.sans.org/info/36923
http://www.sans.org/info/36909
http://www.sans.org/info/36914
http://www.sans.org/reading_room/images/click.php?id=363

Packer Analysis Report – Debugging and
unpacking the NsPack 3.4 and 3.7 packer.

GIAC GREM Gold Certification

�BA5<?���?.64�&�*?645A�".:2��0?.64�D?645A�6;3<?:.A6<;�1232;@2�0<:

�1C6@<?���;A<;6<@��A9.@6@

�002=A21��
���B;��	
	

�/@A?.0A

'52�3<99<D6;4�?2=<?A�6@�.;�.;.9F@6@�<3�A52�"@$.08����.;1�����=.082?�=?<4?.:��/F�"<?A5
&A.?� 6B�+6;4�$6;4���(;3<?AB;.A29F��:.;F�0<::2?06.9�.;A6C6?B@�C2;1<?@�5.C2�;<A�.12>B.A29F
.;.9FG21�A52�"@$.08�/6;.?F�.;1�0<:=?2@@6<;�?<BA6;2��'56@�5.@�921�A<�A52�B;3<?AB;.A2
@6AB.A6<;�D52?2�:.7<?�.;A6�:.9D.?2�C2;1<?@�.?2�:6@09.@@63F6;4�"@$.08��.;1�<A52?�$�
$.082?@��.@�.�'?<7.;�'56@�=.=2?�=?<C612@�6;@A?B0A6<;@�<;�5<D�A<�12A2?:6;2�63�"@$.08�D.@
B@21�.;1�<;�5<D�A<�B;=.08�"@$.08����.;1�����B@6;4�A52�#99F�/4�12/B442?��'52
#99F&0?6=A@�B@21�6;�A56@�=?<02@@�.@�D299�.@�A52�0B@A<:�=9B4�6;@�?2>B6?21�A<�.BA<:.A2�A52
=?<02@@�.?2�=?<C6121��'52�0B@A<:�=9B4�6;@�A5.A�.?2�?2>B6?21�.?2�=?<C6121�D6A5�A52�@<B?02
0<12�6;�A52�.==2;16E2@��'56@�=?<02@@�6;09B12@�6;@A?B0A6<;@�<;�5<D�A<�3B99F�?2@A<?2�A52
6:=<?A�A./92�@<�A52�3692�0.;�/2�?2@A<?21�A<�6A@�<?646;.9�@A.A2�.;1�2E20BA21��'56@�.9@<
6;0<?=<?.A2@�.;�.;.9F@6@�<3�A52�=.082?�.@�D299�.@�A52�:2.;@�A<�0?2.A2�.;�B;=.082?�:.;B.99F
.;1�A<�0.90B9.A2�A52�#�$�

�@�"@$.08�?2:.6;@�<;2�<3�A52�:<@A�0<::<;�$��$.082?@�D6A5�5645�?.A2@�<3�?2=<?A21�B@2
.;1�16@0<C2?F��"@$.08�6@�6;�A52�A<=�
	�96@A�3<?�$��$.082?@�B@21�<;�:.9D.?2�@.:=92@�@A<?21
6;�A52��! �1.A./.@2��.;1�D6A5�A52�?29.A6C29F�9<D�.00B?.0F�?.A2@�3<?�12A20A6<;��6A�6@
6:=<?A.;A�A5.A�@20B?6AF�=?<32@@6<;.9@�4.6;�.�:<?2�0<:=?252;@6C2�B;12?@A.;16;4�<3�A56@�.;1
?29.A21�=.082?@���<?�A56@�?2.@<;��A56@�=.=2?�5.@�/22;�D?6AA2;�.@�.�/?<.1�.;.9F@6@�<3�"@$.08
A5.A�D699�529=�/<A5�A52�;<C602�.;1�2E=2?62;021�.;A6�:.9D.?2�=?<32@@6<;.9�

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

�

1. Introduction
This document provides instructions on how to unpack NsPack 3.4 and 3.7 using

the OllyDbg debugger. The OllyScripts used in this process are included in the

appendixes. The custom plug-ins that are used to automate the procedure are provided

with the source code. This paper also includes instructions on how to fully restore the

import table so the file can be restored to its original state and executed. This is continued

further with instructions on how to convert the machine code (assembly language) into a

higher level language (in this paper we will use C) so that an analyst can better

understand the workings and purpose of the packer.

Unfortunately, many commercial antivirus vendors have not adequately analyzed

the NsPack binary and compression routine. This has led to the unfortunate situation

where major anti-malware vendors are misclassifying NsPack (and other PE Packers) as

Trojans (figure 3.1). In section 6 we will show through both static analysis and dynamic

execution that NsPack is not a Trojan but a simple PE compression utility.

NsPack remains one of the most common PE Packers with high rates of reported

use and discovery. Oberheide, Bailey, & Jahanian (2009) used the Arbor Network’s Arbor

Malware Library (AML) to analyze the distribution of PE Packers. The results are

displayed in figure 3.2. In these tables we see that NsPack is in the top 10 list for PE

Packers used on malware samples stored in the AML database.

While this paper focuses on NsPack, the general principles are designed to enable

the reader to learn how to apply the process to other PE Packers. NsPack 3.x is a simple

compressor. It does not support Anti-Debug or Anti-Disassembly features. It used

configurable section names (defaulting to .nsp). In this document we will walk through

both the NsPack 3.4 and 3.7 versions.

Although we will touch on many topics, it is presumed that the reader has a good

knowledge of the following:

1. PE file format. Microsoft provides a couple of excellent sources of

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

�

knowledge for the budding code analyst1.

a. Kath, Randy (1997) "The Portable Executable File Format from

Top to Bottom" Microsoft Developer Network Technology Group.

(Available from: http://www.pelib.com/resources/kath.txt)

b. Pietrek, Matt (1998) "Windows System Programming Secrets",

John Wiley & Sons Inc, USA

c. Pietrek, Matt (1994) "Peering Inside the PE: A Tour of the Win32

Portable Executable File Format" Microsoft Developer Network

Technology Group. (Available from:

http://msdn.microsoft.com/en-us/library/ms809762.aspx)

2. An acquaintance with SEH (Structured Exception Handling) is required.

3. Basic knowledge of the Win32 API (or access to a good guide). In

particular, the following APIs are a large part of most packers:

a. CreateProcess,

b. GetCurrentProcessID,

c. GetModuleHandleA,

d. GetProcAddress,

e. OpenProcess,

f. ReadProcessMemory,

g. VirtualAlloc,

h. VirtualFree, &

i. WriteProcessMemory.

The reader should also have a good knowledge of ASM (assembly language). The

following sites provide an excellent introduction to this topic:

a. Computer Structures C335 Syllabus (Doyle, 2009),

�'52?2�.?2�:.;F�4<<1�<;96;2��&!��$��.;1�9<D�92C29�=?<4?.::6;4�ABA<?6.9@�<;96;2��#;2�&B05�2E.:=92�6@��
Iczelion's tutorial Series��.A�5AA=���D6;��.@@2:/9F�<;96;2�3?�ABA<?6.9@�5A:9

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

http://homepages.ius.edu/jfdoyle/C335/syllabusc335fall2009.htm

b. Iczelion's Win32 Assembly Homepage,

http://win32assembly.online.fr/tutorials.html

Each of these sites provides a step by step introduction to ASM that is designed to

teach the novice assembly coder the fundamentals. Section 9 (Appendix) provides a

disassembled code section for NsPack that can be used as an exercise in practicing

reversing this packer.

1.1. Tools required:
There are many good debuggers and dissassemblers (including HexRays IDA Pro

from the commercial stable). This paper has relied heavily on a use of the following

tools:

! OllyDebug v1.10,

! OllyDump plug-in,

! Import ReConstructor 1.6, and

! OllyScript Plug-in.

1.2. Why Study PE Packers?
As Guo, Ferrie & Chiueh (2008) note;

��;@A2.1�<3�16?20A9F�</3B@0.A6;4�:.9D.?2�0<12��:.9D.?2
.BA5<?@�A<1.F�52.C69F�?29F�<;�=.082?@��D5605�.?2�=?<4?.:@
A5.A�A?.;@3<?:�.;�2E20BA./92�/6;.?F�6;A<�.;<A52?�3<?:�@<�A5.A
6A�6@�@:.992?�.;1�<?�5.@�.�16332?2;A�.==2.?.;02�A5.;�A52
<?646;.9��A<�2C.12�12A20A6<;�<3�@64;.AB?2�/.@21�.;A6�C6?B@
��)��@0.;;2?@���;�:.;F�0.@2@��:.9D.?2�.BA5<?@�?20B?@6C29F
.==9F�16332?2;A�0<:/6;.A6<;@�<3�:B9A6=92�=.082?@�A<�A52�@.:2
:.9D.?2�A<�>B6089F�42;2?.A2�.�9.?42�;B:/2?�<3�16332?2;A�
9<<86;4�/6;.?62@�3<?�16@A?6/BA6<;�6;�A52�D691��'52�3.0A�A5.A
:<?2�.;1�:<?2�:.9D.?2�/6;.?62@�.?2�=.0821�@2?6<B@9F
124?.12@�A52�23320A6C2;2@@�<3�@64;.AB?2�/.@21��)�@0.;;2?@��6A
.9@<�?2@B9A@�6;�.;�2E=<;2;A6.9�6;0?2.@2�6;��)�@64;.AB?2�@6G2�
/20.B@2�D52;�.;��)�C2;1<?�0.;;<A�23320A6C29F�B;=.08�.
=.0821�A5?2.A��6A�5.@�;<�05<602�/BA�A<�0?2.A2�.�@2=.?.A2
@64;.AB?2�3<?�A52�A5?2.A��

Over 80% of malware is packed (Guo, Ferrie & Chiueh, 2008). The growth of

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

�

cybercrime will only lead to more malware and as these products are commercialized, the

authors are likely to make more effort (Debrosse, 2009) to create software that is more

difficult to detect. By creating packers, the cybercriminal can increase the costs of

detecting the software and hence increase their expected returns. For this reason it is

important that information security professional understand PE Packers whether they

work in the AV industry or for general commercial ventures. In the former instance, an

understanding of the packer problem is only likely to become more critical and in the

later, an understanding of packers will help the security professional to gain an

understanding of the problem in its true extent.

For the majority of security professionals, analyzing malware (and hence packers)

becomes most critical when an incident has occurred. Knowing how an attacker has

obscured their software can be the key in any successful incident handling exercise

involving malware, which is nearly all incidents these days and is only growing worse.

Guo, Ferrie & Chiueh (2008) report that the typical way an AV vendor such as

Symantec handles packers involves:

1. Recognize the packer,

2. Identify the packer,

3. Create a recognizer, and

4. Create an unpacker.

This paper will incorporate all of these steps for the NsPack packer.

1.3. Paper sections
This paper has been divided into several sections. The first section following the

introduction (section 2, What is a packer) details the functions and operation of a PE

packer. This section provides the basic functions of a PE packer as well as a synopsis of

the PE format. Section 3 (NsPack) provides a synopsis of the NsPack compression

function. This section includes an analysis of the execution and operation of the NsPack

compression utility and the creation of a packed executable.

Section 4 (Determining the packer), provides a walk-through procedure for

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

�

determining the packer used on a PE Executable file with a detailed step-by-step guide to

using the tools. The next section (Unpacking in Olly) is a guide to manually unpacking an

NsPacked PE executable using the Olly Debugger. This is followed by a manual process

that can be used to correct the IAT and make the recovered file executable (for further

analysis) in section 6.

Section 7 (NsPack itself) is a detailed analysis of the NsPack compression

function and executable. This section goes into the structure and operation of the

compression program. In section 8 we draw our conclusions, while, the final section

(Appendix) is optional and provides a detailed analysis of the NsPack routine and

processes. This section is designed for those wishing to create a functional reversing

routine for this packer.

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

�

2. What is a Packer?
A 'Packer' is a compression routine that compresses an executable file. These

programs originated to minimize disk space and make downloads faster and derive from

valid uses such as that of WinZip's compressed executable function. They also obscure

the original file and make it more difficult to match the file signature of a compressed

file.

Packer programs have been introduced into the world of malicious software so

that the authors of the malicious code can extend the expected life of the software. Many

valid software authors have used packers to make it more difficult and costly to reverse

engineer their software. To this end, packers have become more complex over time and

many incorporate complex routines to encrypt the executable that they are protecting.

The packer takes the original program and compresses it. The compressed

executable is moved to the data section of the newly created file. As the data is

compressed, the PE header and the section header of the original file can no longer be

used to run the executable. As such, the packer will add a stub function. This is designed

to decrypt and decompress the packed file from the data section of the packed executable

into memory where the original file is reconstructed.

Basically, the 'executable' part of the program is a simple routine that is designed

to decompress the original file (or at least something that approximates it) into memory

and to resume execution at the OEP (Original Entry Point) of the uncompressed program.

Packers generally create a resultant executable that is smaller than the original

file. They also change the signature of the file and any hash that can be used to create a

simple matching engine (hence making anti-virus software more costly). This comes at a

cost. The packing process itself can create a signature that leaves the files being flagged

as suspicious (there are valid software products that are packed with unusual packers).

There is also a run-time cost as the file needs to be unpacked and/or decrypted before it is

run, a process that consumes more cycles than the original executable. This may or may

not be an issue to a malicious code author.

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

�

Some packers only reconstruct selected calls at a time and are more difficult to

dump from memory (an example of such a packer is Themida VM). Many packers also

have complex routines to stop memory debugging (or at least make this more difficult

and hence costly). NsPack is not one of these and this is outside the scope of this paper.

The weakness of any packer is simple; it needs to be unpacked into memory to be

useful. The best that a packer can do is to make the analysis more costly.

2.1. A Quick overview of a PE-COFF Executable File
All 32 and 64 bit executable files in the Microsoft Windows family of operating

systems use the Portable Executable (PE) structure. PE is the native file format of all

Win32 executable programs. It has a similar specification to the Unix/Linux COFF2. It is

essential to have an understanding of the PE specification when analysing malware on

Windows.

DOS MZ header [Hex 4D 5A
(MZ)]

DOS stub

PE header

Section table

Section 1

Section 2

Section ...

Section n

Figure 2.1. The general layout of a PE file.

Portable Executable refers to the universal nature (on the Windows platform) of

the file format for executable Windows programs. This is universal as the PE format used

by the WIN32 platform is valid on all platforms (Intel, PowerPC etc).

All windows executable files other than VxDs and 16-bit Dlls are created using

the PE file format. This definitely includes all malware and packers on Windows.

���<::<;�#/720A��692��<?:.A

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

�

Figure 2.1 displays the standard PE file format. All PE files begin with a DOS MZ

header. When a file is packed, the original executable is compressed and saved as a

section in the new (packed) executable file. This is displayed in figure 2.2. Here the

compressed data section contains the original executable file.

The new program is really just a decompression routine designed to load the

original executable into memory.

Figure 2.2. The layout of a packed PE file.

When the executable runs, the decompressed version of the original file is loaded

into the computer memory.

2.1.1. PE-COFF and the PE Header

The first section of any PE file is the MZ header. This is named after the

developer of this format, Mark Zbikowski. The MZ Header starts with the Hex value "4D

5A" and commonly contains a string such as "This program cannot be run under DOS" or

"This program must be run under Windows"3.

The PE Header follows the DOS MZ header. This section contains the data
��!60?<@<3A�5.@�A52�3B99�$���#���&052:.A60@�.C.69./92�3?<:
5AA=���DDD�:60?<@<3A�0<:�D510�@F@A2:�=9.A3<?:�36?:D.?2�$��#��1D;�:@=E�

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

	

structures for the common execution settings of the file. The PE header is specified in the

file at offset 0x3C. This is a 4-byte signature that identifies the file as a PE format image

file to the Windows Operating System. This signature is “PE\0\0” which is "50H 45H

00H 00H" in Hex and represents the letters “P” and “E” followed by two null bytes.

The PE Header includes the following information:

! Machine

! Number Of Sections

! Time Date Stamp

! Pointer To Symbol Table

! Number Of Symbols

! Size Of Optional Header

! Characteristics

The PE header is a general term for the PE-related structure also termed the

IMAGE_NT_HEADERS. The PE header used by the PE loader which determines the

starting offset of the PE header from the DOS MZ header. Windows can actually leave

out the DOS stub and start execution at the PE header (this is the true file header). The

MZ is used as this allows Windows to determine the type of file more easily.

2.1.2. Section Table

The section table is a reference to the various sections contained in the PE file.

The section table has the information displayed in Figure 2.3. This includes the name of

each section, the offsets and a set of characteristics describing the file section.

Figure 2.3. The sections from an NsPack packed file.

The section table maintains the section permissions for the file. These are used by

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

Windows when memory pages are allocated. Gustavo Duarte (2009)4 has an excellent

series of posts on how Windows load s the various page sections into memory for those

wanting to learn more about this process.

2.1.3. Sections

Each of the sections that are maintained in the section table contains information

related to how the program runs. Each executable section is a collection of data used by

the system. Generally, the compiler and linker that are used to turn source code into

machine code will group the sections into as few sections as possible. Each of these

sections is based on the characteristics of the file. In general, this will be based on the

data section permissions (such as a Read, Write and Executable page flag).

In order to preserve memory and make the program run more efficiently, most

compilers try to limit the number of sections and a standard PE file may contain the

following sections:

! .text

! .data

! .rsrc

! .reloc

Many packers create more segments than are necessary for the program to run as

these are more concerned with making the process of reverse engineering the file as

complex (and hence economically expensive) as possible. In the example used in this

paper, this is not the case. NsPack is a comparatively simple compressor and the packed

file will usually be contained in three (3) sections. This is configurable in NsPack and the

file may have a number of additional sections so the discovery of more than three

sections does not preclude NsPack as the packing engine as we will detail later in this

paper.

The grouping of data into sections is based on the common attributes and not on a

���<D�'52��2?;29�!.;.42@�,<B?�!2:<?F���5AA=���1B.?A2@�<?4�4B@A.C<�/9<4�=<@A�5<D�A52�82?;29�:.;.42@�
F<B?�:2:<?F

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

�

logical basis. Each section can contain either "data", "code" or some other logical concept

as long as they have identical attributes. A block of data that is read-only should be in a

section that is marked as read-only. This can be both data and code, as long as it cannot

be changed.

The PE loader (or dynamic linker) begins by mapping the sections into the system

memory. The loader then examines the attributes of the sections in the executable. Each

memory block within a particular section is then set with the designated attribute. The

dynamic loads and links the shared libraries for the executable when executed.

2.1.4. Loading a PE File into Memory

The main stages used to load a PE file into memory (although grossly simplified)

are:

1. The PE-COFF file is executed (by a user or process). The system starts by

examining the DOS MZ header and extracts the offset for the PE header if this

exists. On finding the offset, the system jumps to the PE header.

2. The PE loader next ensures that the PE header is valid. In the case where the

PE header is invalid, the systems will error. Otherwise, the system jumps to

the past of the PE header to the start of the section table.

3. The PE system next inputs the section table into memory mapping the sections

from the table into the systems memory. The attributes of the sections as listed

in the section table are mapped in memory.

4. Once the PE file has been mapped into the system's memory, the dynamic

linker (the PE loader) moves to the logical sections of the PE file. The next

jump is to the import table.

The dynamic linker maps each of the sections into memory assigning the

specified permissions to each of the sections.

2.1.5. The Import Address Table (IAT)

The dynamic linker moves to the IAT after the PE Header. The system uses the

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

�

IAT as a lookup table to find functions that are located in different modules used by the

application. The IAT exists as the system does not have the memory location for all of the

libraries it uses. Rather, an indirect jump is necessary whenever an API call is completed.

The dynamic linker loads the various modules into memory and connects them

together and then writes jump instructions into the IAT slots. The system is then

configured such that it is positioned at the memory locations of the consequent library

functions. This does have a negative impact on the performance of the system as

additional jumps are made outside the calling executable (in place of intra-module calls).

Dynamic libraries (usually in the form of a DLL in Windows) increase the

maintainability of the program by removing redundancy. This allows the same code to be

reused and updated easily unlike when all executables are separately maintained in

statically linked files (static linking builds the code into each executable. This results in

larger code as well as a greater requirement to maintain and patch individual programs).

OBC (Object Orientated Code) allows the creation and use of common libraries in place

of statically linked code. As such, a single DLL can be called from numerous programs.

This is extremely beneficial as the user can patch a single file in place of hundreds (or

more) statically linked files.

Some examples of calls made by the IAT include those files set from the code as

external calls. For instance, a C# program using the following statement could call the

"Sleep()",GetDisk(), FreeSpace or " GetCommandLine()" functions5:

using System;

For instance, the following call,

PUSH EBP

CALL DWORD PTR [004933FA]

Will return the value stored by the system at location, 004933FA. Looking at this

in a hex editor will return a NULL. That is, the Import Address Table will hold the value

"00 00 00 00" at address "004933FA". When running (we can see these values in a

��&22�5AA=���:@1;�:60?<@<3A�0<:�2;�B@�96/?.?F�:@�������)&�������.@=E�3<?�12A.69@�<;�A52��2?;29���199
3B;0A6<;@

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

debugger such as Olly as will be detailed later in the paper) a memory location will be

returned. For instance if the value "004933FA" points to "AB 0C 59 7C" in memory, the

system is calling the GetProcAddress() function6.

2.1.6. Relocations

Windows executable files are not based on position-independent code but are

compiled to a chosen base address. In the event that a Windows executable cannot be

loaded to the chosen address, Windows will rebase the memory location (move to a new

base address). This can occur if the chosen address in memory is already used by another

program. If this occurs, Windows has to recalculate all absolute addresses. This involves

changing the values stored in the PE when the application is loaded into memory and

setting new values.

The loader compares the preferred and real load addresses. A delta value

representing the difference between the real and preferred start address is calculated. The

delta is added by each of the preferred address in the application. The result is the actual

memory location that is used by the application when it is executed. The base relocations

are then loaded as a list into the system. These are called by the application and loaded

into an existing memory location as required.

When loaded into the system memory, the resulting code that is created as a

combination of the application and the loaded modules is set as private to the process by

the system. When this occurs, the loadable module cannot be shared further.

Microsoft avoids rebasing setting pre-computed and non-overlapping memory

addresses to limit the resultant performance hit that this process causes. As most users do

not limit their applications to only those from Microsoft (and a number of vendors that

follow their set addresses), rebasing will still occur. Malware and other packed software

do not conform to the specifications recommended by Microsoft and hence this is one of

the many reasons why malware degrades system performance. Rebasing can create

extremely efficient code at the expense of additional memory use.

Linux ELF executables are completely position independent. Unlike PE files, ELF

��&22�5AA=���DDD�.@A2?06AF�;2A�H.G.8?G2��5A:9�D6;��-.=6-3B;0A6<@�5A:9�3<?�.�96@A�<3�*6;1<D@��$�@�

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

�

executables use a Global Offset Table. This results in a substitution of execution time in

opposition to memory usage. Linux favors tight memory use, Windows PE files the

former.

2.2. Further reading and related work
The details of each of these sections are covered fully in the "Microsoft Portable

Executable and Common Object File Format Specification"7. This document is the

ultimate reference guide for all aspects of the PE-COFF format. There are many papers

on malware that will provide detail into the various packers if the reader wishes to

follow-up this topic in more detail. The techniques presented in this paper can be applied

to other packers8 equally well.

��'56@�3692�6@�=?<C6121�3?22�/F�!60?<@<3A�.;1�6@�.C.69./92�<;96;2�.A
5AA=���DDD�:60?<@<3A�0<:�D510�@F@A2:�=9.A3<?:�36?:D.?2�$��#��1D;�:@=E
��&B05�.@��&$.08���&���($+��'52:61.�2A0�

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

�

3. NsPack
NsPack is a formerly semi-commercial packer. It was written by Liu Xing Ping

and distributed by North Star Software in China. Although originally sold under a

commercial license, the product was never restricted and was freely distributed through

Warez sites and the RE (reverse-engineering) underground.

In section 6 we will analyze the NsPack binary executable itself. From this

analysis, we see that NsPack was most likely developed using Microsoft Visual C + + 6.0

and was itself packed using ASProtect, another PE Packer by Alexey Solodovnikov. The

likely reason for using a separate packer to pack NsPack itself is in order to make the

analysis and reversing of the packing algorithm used more difficult. In section 6, the

unpacking process for ASProtect 2.1 will be applied to NsPack 3.7 in order to dump an

unpacker version of the original packer.

Unfortunately, many commercial antivirus vendors have not adequately analyzed

the NsPack binary and compression routine. This has led to the unfortunate situation

where major anti-malware vendors are misclassifying NsPack (and other PE Packers) as

Trojans (figure 3.1). In section 6 we will show through both static analysis and dynamic

execution that NsPack is not a Trojan but a simple PE compression utility.

Figure 3.1. Classic Misdiagnosis

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

�

NsPack remains one of the most common PE Packers with high rates of reported

use and discovery. Oberheide, Bailey, & Jahanian (2009) used the Arbor Network’s Arbor

Malware Library (AML) to analyze the distribution of PE Packers. The results are

displayed in figure 3.2. In these tables we see that NsPack is in the top 10 list for PE

Packers used on malware samples stored in the AML database.

This is likely the reason for the high rates of misclassification in the industry

noted above. There are some valid uses for PE Packers. These include:

Making Reverse Engineering of commercial software more difficult and

expensive,

1. Hiding internal functions and algorithms from users,

2. Penetration tests and the creation of test exploits,

3. Minimizing download sizes of files in order to maximize transfer rates.

As such, although packers are commonly associated with malware, the use of PE

compressors or Packers cannot be limited to malicious use cases.

Figure 3.2. Packer distributions, Jon Oberheide, Michael Bailey, Farnam Jahanian
(2009)

As will be demonstrated later, the Entrypoint of NsPack generally makes use of a

JMP instruction followed by a PUSHF and PUSHA command.

NsPack is an executable file compressor for Windows 32 and 64 bit PE based

executables. It also has the capability to work on .NET files. In marketing material and in

tests (figure 3.3), it is shown that NsPack is capable of compressing the size of a 32-bit or

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

�

64-bit Windows executable by up to 60%. It is claimed (NsPack, 2009) that no noticeable

performance change will result from this compression. There are better compression

programs, but not all of these support 64-bit exe, dll, ocx and scr files. In addition, the far

lower deployment rate of NsPack when compared to more common packers (such as

UPX) means that less effort has been made to understand and automatically unpack the

algorithm used (figure 3.1).

Many anti-virus vendors9 simply report the existence of a packer. At the time of

writing, Sophos reports NsPacked files as "Mal/Packer" and PcTools as

"Packed/NSPack" for example10. As many files that are packed are not malicious, this

leads to a significant increase in the false positive or detection rate and in some industries

can pose a significant cost to the software user either through lost productivity or through

restricted access to alternative software products.

The greatest challenge posed by NsPack is the ability to recompress an already

compressed executable file. NsPack will recompress a PE file that has been compressed

using Upx, Aspack, Pecompact, and several other packers. This slows the execution of

the packed executable considerably, but make reverse engineering of the program

extremely complex. Malware authors use this technique to further obfuscate their

payloads. The techniques have not been widely deployed at present due to the inability of

many anti-virus vendors to effectively decompress a large number of packers in real time.

���;�2E.:=92�<3�.�0<::<;�:.9D.?2�?2=<?A�3<?�:B9A6=92�C2;1<?@�6@�=?<C6121�/F�@<B?02@�@B05�.@�)6?B@�A<A.9
�5AA=���DDD�C6?B@A<A.9�0<:���.;1�%./61�!<;82F����@.:=92�.;.9F@6@�6@�=?<C6121�.A�A52�96;8�/29<D�

5AA=���?./61:<;82F�<?4�:.9D.?2���1�3
�/�2
�10�
10��3�1�/�2.�.
1�
	���1.1
��3�03�2��	�01
1.�5A:
9

	��9@<�@22�5AA=���DDD�A5?2.A2E=2?A�0<:�A5?2.A@�=.0821�;@=.08�5A:9�3<?�3B?A52?�2E.:=92@�

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

�

Figure 3.3. Packer Compression tests (Kpan, 2006)11

This has resulted in the false positive issue noted above but also with the lower

use of packers due to the increased likelihood of being rejected whether deemed

malicious or not. The positive effect of this is that it is less cost effective (in terms of time

for a start) for malware authors to pack software and it can be prohibitive to pack

malicious code using multiple packers. Conversely, many users have become accustomed

to the false positive issue and may run programs that are otherwise likely to be blocked.

In general, a malware analyst will not be interested in NsPack itself, other than

removing its compression. NsPack makes the analysis of a packed sample more difficult

and time consuming, and hence costly.

3.1. Using NsPack
The executable to be packed is either dragged/dropped onto the main window or

the user can select:

�'56@�A./92�6@�=?<C6121�/F�5AA=���DDD�42<06A62@�0<�7=�$9.FA<D;�,<F<��
�	�2E2=.082?�5A:

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

�	

File -> Open

Figure 3.4. NsPack in action

Alternatively, the user can select the "Directory" tab and compress all executable

files in a directory at one time.

NsPack runs as a standard Windows application (figure 3.4). It is always

advisable to run untrusted software onside of a normal production environment. In this

case, NsPack was run from a Windows Vista system within a VMware session. Using the

program is extremely simple.

This session was configured within a RedHat Linix workstation running SNORT

and TCPdump. The reason for this is to capture any traffic to or from the host that could

be associated with NsPack. This methodology will allow for the detection of network

traffic and allow the determination of a network service if one exists.

As noted in section 3, many anti-virus vendors (see figure 3.1) classify NsPack as

a Trojan. If this was the case, the program would either bind to a network port or connect

to a remote IP address. Neither occurred when running the program. In fact, running the

program for a period of 1 week resulted in no unexpected network traffic.

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

�

3.1.1. Options

NsPack is highly configurable (figure 3.5). Relocations, shared sections and

section names are all able to be configured.

Figure 3.5. NsPack Options

NsPack allows the user to change the section headings. In place of the default

".nsp" naming convention, a user defined naming convention or a series of random

numbers may be used. Section names can also be cleared using the "Clear all" option.

NsPack has been available in one form or another since 2003 (see figure 3.6) but

as the domain is not longer maintained and no new version have appeared, it would

appear that the program is no longer being supported.

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

��

Figure 3.6. About the Packer

Once the file has been loaded, compressing it is simple (figure 3.7). Select:

File -> Compress

Figure 3.7. Selecting the Packer compress function

The compression routine will run and the results are displayed in NsPack's main

window (figure 3.8).

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

��

Figure 3.8. Running the Packer

At this point, we have a compressed executable.

During this process, TCPView (from SysInternals) was run locally (figure 3.9) on

the system to monitor for local ports and listening services. Snort will not detect the

presence of a listening but not sending service. No ports were opened by NsPack.

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

�

Figure 3.9. Monitoring NsPack locally using TCPView

At the same time, NsPack was being monitored by other SysInternal tools. In

figure 3.10, Process Explorer is used to see if any other threads are created. Process

Monitor was used to log these events. No unusual activity was monitored during these

tests.

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

��

Figure 3.10. NsPack monitored by Process Explorer

Although, and as noted, several Anti-Virus vendors classify NsPack as a Trojan;

we can see that NsPack exhibits no malicious behavior by itself.

The result of this is that we can be satisfied that NsPack is not a Trojan itself, but

simply a packer or compression function. We can also use this to create a number of

distinctly different packed executable by manipulating the options associated with

NsPack.

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

��

4. Determining the packer.
In this section, we will walk through the analysis, disassembly and rebuilding of

NsPack, annotating the differences between the 3.4 and 3.7 versions. We will start with

the process used to determine what packer (if any) has been used. Although the

distinctions are minor, the walkthrough for NsPack 3.4 have been noted in full below

where they differ from the processes used with NsPack 3.7.

The first step is to validate that the correct packer has been used on the samples.

Different packers require different processes to unpack them. Using the wrong process

will at best waste time and could at worst lead to compromising a host.

In the case of NsPack, two (2) tools (PEiD and RDG) are used to ensure that this

was correct prior to starting execution. Using the two tools allows us to minimize false

positives. PEiD is one of the most accurate packer detectors, but this still means errors

occur. By using PEiD and RDG conjointly, the error rate is maintained at an acceptably

low level. These tools are available from the following websites:

! PEiD (http://www.peid.info/)

! RDG Packer Detector v0.6.6 2k8 or later (http://www.rdgsoft.8k.com/)

4.1. PEiD
PEiD is designed to detect the majority of packers, cryptors and compilers used

on PE files. It has the ability to detect over 470 distinct packer signatures in PE files.

Using PeID is simple. Just run the program (administrator privileges may be required on

some systems)

To scan a file, simply:

1. Click the button on the top right of the main PEiD window to the

right of the "file" field.

2. Select the file to be analyzed.

3. PEiD will automatically scan the loaded file and return the results.

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

��

PEiD has a number of options (figure 4.1) that provide the ability to scan multiple

files or directories at one time. It is also possible to test the file more completely, but this

does increase the time required to report on each file.

Figure 4.1. The PEiD options

The button provides additional information about the file being analyzed

(figure 4.2) and provides statistical data as to the entropy of the file (which can also be

used in detecting encrypted or compressed segments).

Figure 4.2. PEiD options

Loading an NsPack compressed file will quickly return the existence of the

packer. In the case the version 3.7 samples, these are readily validated as NsPack 3.7

compressed executables (figure 4.3).

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

��

Figure 4.3. PEiD determination of NsPack 3.7

With NsPack version 3.4 compressed executables, the results can be less accurate

and a "Hardcore Scan" may be required.

PEiD will also return some basic information concerning the file such as:

! Information returned - Entrypoint

! File Offset

! Linker Info

! EP section

These are covered in more detail in section 2 and the manual calculation of the

File Offset is included in Section 6.3.2.

4.2. RDG Packer Detector
It is important to validate the settings when manually checking samples. Using

multiple detection tools in combination significantly increases the probability that we

have identified the packer used on the sample correctly.

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

��

Figure 4.4. RDG determination of NsPack 3.7

In each case, the samples have been validated as correctly being packed using

NsPack version 3.7. This differs slightly to NsPack 3.4, where more errors have been

noted in determining the sample packing version.

Many of these tools behave poorly on Windows Vista. The use of either Windows

XP or Windows 7 is recommended and even the later can periodically fail.

To use RDG, load the file to be analyzed:

Select

This will bring up the Explorer 'File' menu and you can then load the program to

be tested.

Next, select the button. This will run the analysis and return the

result (figure 4.4). This can be clicked to provide more details in some instances (figure

4.4), however, NsPack 3.7 gives little more information. Where multiple packers have

been used or the file has been manually altered (e.g. IAT manipulation) this can provide

information that may aid in the recreation of the file.

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

�	

Figure 4.4. RDG has successfully detected NsPack version 3.7.

If the user has mixed the configuration options (figure 3.5) when creating the

packed file, NsPack version 3.4 will not always be detected correctly by many tools

(figure 4.5).

Figure 4.6. RDG determination of NsPack 3.4

With Version 3.4, there are some discrepancies as to the version (see above). The

results do point to NsPack, but the version may not be correctly calculated.

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

�

5. Unpacking in Olly
This section details the process to unpack NsPack 3.x compressed executables

using Olly (by Oleh Yuschuk). Extreme care and caution should be taken when

unpacking possible malware samples in Olly. This should go to the use of isolated hosts

(such as VM's or specialized non-networked systems). A debugger runs the executable.

Although a good deal of control is maintained over the executable being analyzed in a

debugger, it is easy to err and allow the sample to infect the host. VM's are of use here as

the snapshot capability allows the reversal of steps that cause problems.

A dissassembler such as IDA (Appendix) does not run the executable. As such, it

will not lead to the sample infecting the analysis host. Olly is used for the manual

unpacking process. Olly is a powerful Windows debugger and is widely deployed (and

being free does not hurt). Olly has a number of enhancements and add-ons that increase

its effectiveness.

To load and extract the packed executable images using Olly, we shall start with

configuring Olly and the environment it is running within:

1. Get the OllyDbg program from http://home.t-online.de/home/Ollydbg/

2. Get the OllyDump plug-in from

http://www.pediy.com/tools/Debuggers/ollydbg/plugin/OllyDump/OllyDu

mp.zip

3. Extract the file, ollydump.dll file into OllyDbg's plug-in directory (e.g.

C:\Reversing\Olly\Plug-ins).

4. Run OllyDbg,

5. Click File->open,

6. Select the executable to unpack.

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

��

Figure 5.1. Check the plug-ins are loaded

It is also good practice to ensure the Plug-in has been correctly loaded. To do this:

1. Click File->Plug-ins

2. Check that OllyDump has been loaded (figure 5.1).

Olly can be used to analyze malware samples in depth and to investigate the

processes started by an unknown application. In this section, we look at analyzing and

dumping packed samples. The section may be focused on NsPack, but the same

techniques can be used on other types of packers.

5.1. Manual Unpacking
With OllyDebug running and the OllyDump plug-in loaded (figure 5.1), click

“F3” to load the packed sample. An alert should appear noting that the sample is packed.

Click ok (figure 5.2).

Figure 5.2: Loading a packed sample into Olly

The packed sample will now be loaded into Olly. Note that a warning that the

sample is packed is again displayed (figure 5.3). Again, click ‘Yes’ to continue. As we are

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

��

attempting to dump and manually unpack the sample, it is expected that we will receive

warnings. Most software is not packed and Olly's ability to analyze the software is

limited whilst it is packed.

Figure 5.3: Again, Olly lets us know the sample is packed.

To run the program by steps and hence decompress the original, we need to enter

“F8” (select the F8 function key) to step through the packed sample (figure 5.4).

Figure 5.4: Stepping through the program.

At this point you should notice that the Registers have changed (figure 5.5). Olly

can display the values help in the systems memory and as the program executes and these

update, we can watch the changes that occur.

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

�

Figure 5.5: The registers will change as the program is stepped through.

From figure 5.5, we can see that the values in the registers have changed with the

original load on the left, with the alteration subsequent to hitting F8 on the right. The ESP

register is the CPUs 32-bit stack pointer and it stores the current position in the stack.

When a value is pushed to the stack, it is pushed below this address. The ESP register

points to the current top of stack.

A PUSH subtracts 4 from the SP and copies a 32-bit value onto the top of the

stack, POP copies a 32-bit value from the top of the stack and adds 4 to SP. SP is the 16-

bit stack pointer register. The SP is the low 16 bits of the 32-bit ESP register.

In order to trace the stack, Right Click the ESP register and select “follow in

dump” (figure 5.6). Following this value should take us to the OEP.

Olly is a user-mode debugger. User mode debuggers attach to a single process

unlike kernel mode debuggers (such as SoftICE or WinDbg) which attach to the entire

system and all processes. This limitation is not a problem with respect to unpacking code.

With a user mode debugger, it is necessary to know the exact process to be analyzed. In

order to unpack a sample this is a prerequisite and hence not a limitation.

Olly displays the registers for the system, and the inability to attach to all running

processes is unlikely to affect any unpacking exercise. When analyzing malware, unlike

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

��

simply unpacking the sample, the process being analyzed may call other processes. When

this occurs, the newly spawned process may not be accessible from within Olly. As noted,

this limitation will not impact the unpacking and dumping process as the system will call

and unload itself in the same process.

Figure 5.6: Tracing the stack.

The "follow in dump" function provides a dump of executable section that we are

going to follow in order to find the “OEP”.

This dump is displayed in the figure 5.7. Note the data contained in the Hex dump

field displayed in the window at the lower left of the screen.

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

��

Figure 5.7: The dump of the executable.

The dump below contains the address of the ESP register. You can see that we

have highlighted the initial four (4) byte values (as displayed in the figure below with the

values highlighted in grey).

Figure 5.8: The address of the ESP register.

Using these values we want to set a hardware breakpoint. We do this using the

following setting:

“Breakpoint -> Hardware, on access -> Dword”

You do this by selecting the highlighted values above and right clicking. This

process is displayed in the image on the following page.

Setting a hardware breakpoint allows us to follow the execution of the program to

this point and then to stop (or interrupt) the execution of the program.

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

��

Figure 5.9: Setting a hardware breakpoint

With our breakpoint, we want to hit the “F9” function key to “run” the executable

until it hits the breakpoint that we have set. This takes us to a jump command. This is

displayed in the figure below:

Figure 5.10: Jumping to the command

We can follow this jump by entering “F7” to “step into” the command. This will

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

��

allow us to run a single machine code command and hence to follow where the jump

command takes us.

After the jump, you will notice that some of the code looks strange (see the figure

below).

Figure 5.11: Obscured code

Enter “Ctrl-A” which will analyze the data and treat is as code. It was not treated

as code previously, because before this was all data. When the unpacker executed, the

code was written to these memory locations.

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

��

Figure 5.12: The code is now readable

Once this process has completed, you will note that the code is far easier to

understand. This is displayed in the previous figure.

Next we want to dump the process.

To do this, we will use the OllyDump plug-in.

To do this, select:

Plug-ins -> OllyDump -> Dump Debugged Process

This process is displayed in the figure below:

Figure 5.13: Dumping from Olly

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

	

When the plug-in is displayed, unselect the “Rebuild Import” option.

Figure 5.14: The section table

When we are working with a highly customized version 3.4 NsPacked executable,

(figure 5.15), we see that the sections are not as clearly marked as the NsPack 3.7 packed

executable with few obfuscation options (figure 5.14).

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

Figure 5.15: Obscured sections

At this point we will not use the Rebuild method from the OllyDump Plug-in.

Figure 5.16: Rebuilding

Select “Dump”.

Then select the file to save the dumped executable as.

Figure 5.17: Saving the file

By loading this into PEiD we can see that the file is no longer packed:

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

�

Figure 5.18: PEiD show the file is now unpacked

By loading this into RDG Packer Detector we can also see that the file is no

longer packed:

Figure 5.19: The IAT needs to be fixed

However, we have not fixed the IAT and hence the executable will not run as yet.

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

�

Figure 5.20: Without a fixed IAT, the file will not execute

As such, we need to fix the IAT. To do this at this stage, we will run ImpRec.

First, attach ImpRec to the running process (as displayed in the figure below).

Figure 5.21: ImpRec is used to fix the IAT

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

Notice that the OEP is not correct. Remember, the OEP was supplied using

OllyDump (above):

Figure 5.22: OEP settings

As such, we need to fix up the OEP in ImpRec:

Figure 5.23: Correcting the OEP
'52;�@2920A�I��'��BA<&2.?05J�A<�0<;A6;B2�

When ImpREC finds the value, it will display a message, click on “OK”:

Figure 5.24: Finding the value

Next, get the imports. This is done by clicking “Get Imports” on the lower left of

the screen:

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

�

Figure 5.25: ImpRec to correct the IAT

We can see from the image above that all of the imports have been found

successfully. This is demonstrated by the “valid: Yes” flag in the “Imported Functions

Found” field. As ImpRec has correctly determined these values, we need to fix the dump.

To do this, look at the lower right-hand side of the screen and select “Fix Dump”. Ensure

that Import ReConstructor is running as the Administrative user on the system or it will

not be able to bind to the process.

You will be presented with the location of where you want to save the repaired

and unpacked executable.

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

�

Figure 5.26: Where to save the corrected file\

Enter the name of the dumped executable that you are fixing and select open.

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

�

Figure 5.27: All fixed

As is displayed above, the log should show that the unpacked executable was

saved. In this case (and this is not unusual) the unpacked executable is larger than the

original file (before it was initially packed).

Figure 5.28: The directory listing

We see from the figure above, that “cmd.exe”, a file that was initially 312Kb in

size was packed to just 148Kb, but when it was unpacked, it has grown to 456Kb.

The unpacked file also runs correctly now that the IAT has been repaired (Fig.

5.29).

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

�

Figure 5.29: The executable runs now.

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

�

6. Fixing the IAT
In this section, a process that is designed to manually correct the IAT is presented.

Figure 6.1: Not all imports are found

We can see from the image above that not all of the imports have been found

successfully. This is demonstrated by the “valid: No” flag in the “Imported Functions

Found” field. As ImpRec has correctly determined these values, we need to fix the dump.

To do this, look at the lower right-hand side of the screen and select “Fix Dump”.

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

�	

Figure 6.2: Let's fix the file

Enter the name of the dumped executable that you are fixing and select open.

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

�

Figure 6.3: Saving the file

As it is displayed above (Fig. 6.3), the log should show that the unpacked

executable was saved. In this case (and this is not unusual) the unpacked executable is

larger than the original file (before it was initially packed).

Also note, that with many of the NsPack 3.4 options, the IAT does not

automatically resolve.

Figure 6.4: Still no luck

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

��

We have to manually fix the IAT when confronted with selected sets of options.

6.1. Automation with OllyScript
To automate this process, we use OllyScript. We begin by loading the sample into

OllyDbg (as occurred in the previous section).

Start by opening OllyDbg. Go to:

! Plug-ins -> OllyScript -> Run Script -> Load...

This has been displayed in the image below:

Figure 6.5: Using OllyScript

To do this, OllyScript needs to be installed before you open Olly. Again, as in the

last section, ensure that you have copied the plug-in to the correct directory.

Load the script first, and then open the sample (as in the first instance).

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

��

Figure 6.6: Loaded in Olly and running

Again, we are at the start of our packed executable. This time, instead of manually

finding the OEP, we will use the script that we loaded. To do this, go to:

! Plug-ins -> OllyScript -> Run Script -> C:\Data\...

Figure 6.7: Loading the script in Olly

Select the correct script that is loaded into the OllyScript plug-in. The script used

in this instance has been included in the Appendix.

We will first get the statement that this code is packed again. Select “Yes” to

continue.

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

�

Figure 6.8: The file is packed

The script should complete and return the message displayed in Fig. 6.9.

Figure 6.9: The script completed

Click “OK” to continue.

At this point, we should find that we are at the OEP.

Figure 6.10: The OEP

At this point, we will dump and reconstruct the IAT in the same manner as in the

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

��

previous section.

6.2. Summary of the process
The summary of the method to uncompress NsPack in OllyDbg involves the

following steps:

1. At entry point, add a breakpoint in the PUSHA instruction and run the

application.

2. After it breaks, follow the ESP register value in dump; add a hardware

breakpoint with 4 bytes length in the first bytes.

3. Run the application again (F9).

4. At the next break (BP), the EIP will be at the transfer command.

5. Simply single step into it (F8) and the value at EIP will be at the original

entry point.

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

��

7. Analyzing NsPack itself
Looking at the NsPack executable and using PEiD we see that NsPack is itself

packed using ASProtect Version 2.1.x.

Figure 7.1: NsPack uses ASProtect

It is also possible to quickly get the OEP of NsPack 3.7 using PEiD:

! Plug-ins -> Generic OEP Finder

Figure 7.2: PEiD and the OEP finder

In this case we have the OEP returned at OEP: 004897F7.

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

��

Figure .3: The OEP is found

Next, we start Olly. The following plug-in is essential:

! IsDebugPresent API

ASProtect has a debugger detection routine. The plug-in is needed to ensure that

the program does not crash prematurely. This file is available from OpenRCE:

! http://www.openrce.org/downloads/details/111/IsDebuggerPresent

To load and enable this plug, go to:

! Plug-ins, IsDebugPresent

! Select “option”

Figure 7.4: The IsDebugPresent flag

The auto-hide function should be set to match the load times of the host running

the analysis.

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

��

Figure 7.5: Setting options

! Next, select whether to automatically hide the debugger not (Autohide). If

checked when you load an exe, debugger is hidden and you can choose

how long thread will sleep until patch byte API is done (Sleep Time).

! It is also possible to manually hide or restore debugger with menu option.

Ensure that the exceptions have been disabled (other than Kernel32

Memory access violations) by entering “Alt-O” in Olly and removing any

ticked boxes:

Figure 7.6: Set the options

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

��

7.1. Quit and load NsPack 3.7.
Enter “F9” to ‘run’ the program. This will take us to the first exception:

Figure 7.7: Exception 1

We will need to count the number of exceptions that are returned. With this

information we can restart and step directly to the final exception, BP on the code section

(where we should reach the OEP).

Next, dump the program and repair the IAT.

To do this, enter “Shift + F9” for each returned exception. Remember to count the

number of exceptions returned.

Figure 7.8: Interacting with the program being debugged

Skipping past the exceptions, we can interact with NsPack (Fig. 7.8).

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

�	

From this we have the message that the executable is packed. This was already

known, so simply select “yes” to continue.

Figure 7.9: Compression noted

Olly has now loaded the module and is awaiting our input. We should go directly

to this point if the plug-in (IsDebugPresent) loaded:

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

�

Figure 7.10: Jumping to the exception

The reason for counting the exceptions was to be able to jump directly to final

exception.

Select “M” (See below circled in the upper left). This gives us the Memory map

(Fig. 7.11).

We now set a breakpoint on the section ‘code’. Do this with the mouse (Fig. 7.12),

or by entering ‘F2’.

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

��

Figure 7.11: A Memory map

Figure 7.12: Break on access

Using the standard techniques, we can then rebuild the IAT.

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

��

7.2. Transfer Command
This is where the program jumps to the real (unpacked) original code entry point

(OEP).

00000000 61 POP A
00000001 9D POP F
00000002 E9 ?? ?? ?? ?? JMP <value>

7.3. Entry Point Signature
The entry point signature is the series of unique OP code instructions in a binary

that we can use to make a simple detector. It is still necessary to test the hypothesis that

the packer detected actually exists (it is not a false positive), but testing a small number

of possible files is simpler than testing all files on a system.

00000000 9C PUSH F
00000001 60 PUSH A
00000002 E8 00 00 00 00 CALL 00000003
00000007 5D POP EBP
00000008 83 ED 07 SUB EBP, 7
0000000B 8D ?? ?? ?? ?? ?? LEA ECX, [EBP-value]
00000011 80 39 01 CMP Byte PTR [ECX], 1
00000014 0F 84 ?? ?? ?? ?? JZ value

9C 60 E8 00 00 00 00 5D 83 ED 07 8D ?? ?? ?? ?? ?? 80 39 01 0F ?? ?? ?? 00 00

Hence a simple signature could be defined as:

[NsPack 3.7 -> Liu Xing Ping]

signature = 9C 60 E8 00 00 00 00 5D 83 ED 07 8D 85 ?? ?? FF FF ?? 38 01 0F 84 ?? 02 00 00 ?? 00 01

ep_only = true

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

�

7.4. Basic Details of NsPack 3.7
In general, NsPacked files report having three sections (.nsp0, .nsp1, and .nsp2).

This is user configurable and these can be set to any value. Consequently, the Entry Point

Signature (above) is a better means of detecting NsPack than simply using the section

headers alone.

7.4.1. PE Structure information

PE Info returns the following information above a generic NsPack compresses

file.

(base data)

entrypointaddress.: 0x7b48e3

(3 sections)

name viradd virsiz rawdsiz ntrpy md5

.nsp0 0x1000 0x3b0000 0x0 0.00 d41d8cd98f00b204e9800998ecf8427e

.nsp1 0x3b1000 0xab000 0xaa6c3 7.99 bc5e2a11a697427c5ec95bb5cabea1dc

.nsp2 0x45c000 0x128b 0x0 0.00 d41d8cd98f00b204e9800998ecf8427e

Note: The section names are variable and can be set to anything by the user.

(1 imports)
> KERNEL32.DLL: LoadLibraryA, GetProcAddress, VirtualProtect, VirtualAlloc,
VirtualFree, ExitProcess

As noted, the user can change the section names from the default ‘.nspX’ value.

The first section is unpacked.

7.4.2. Calculating the PE File Execution Start Offset in NsPacked
files

In the image below, we see the header information of a typical program that is

packed using NsPack. This first example uses the standard options and naming for the

section headers.

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

��

Figure 7.13: The structure of NsPack

This file also has the following Optional Header Section:

Figure 7.14: Optional Headers

With the standard NsPack section naming conventions.

Figure 7.15: Standard naming of the sections

The address of entry point that is stored in the optional header is a relative virtual

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

��

address (RVA), where the loader will begin execution. An RVA is simply the offset of an

item, relative to where the file is memory-mapped.

A comparison of the unpacked Notebook.exe and an NsPack version of the same

are displayed below loaded into Protection ID to display the section and header values.

Figure 7.16: The packed sections

And the unpacked version is displayed in Fig. 7.17.

Figure 7.17: Unpacked sections

The following are the basic stages used to get to the file execution start offset:

1. Determine each section’s virtual memory map (that is the virtual start

address and end address. The virtual address and virtual size for each

section can be found in the section header from the executables PE

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

��

Header).

2. Establish in which section’s virtual space the address of entry point is

located.

3. Validate the offset of that section as per the section header. In the section

header, the pointer to raw data field gives us the file-based offset where

the section data/bytes begin.

4. Calculate the difference between the address of entry point and the virtual

address of the section in which the entry point lies. Add this difference to

the pointer to raw data, which is the file-based offset of the section, in

order to get the file-based execution start offset for the particular file.

Hence, using this data we can calculate the file execution start offset for this file:

[(Address of Entry Point) – (Virtual Address)] + (Pointer to Raw Data)

= (file execution start offset)

The ‘Pointer to Raw Data’ value is also called the ‘Offset’ or ‘Raw Address’.

Now, by inserting the values from our tables above, we get (these values come from

the .nsp0 section header and the main optional headers):

(0x000380F9 - 0x00001000) + 0x00000400 = 0x00038CF9

This calculated value is not necessarily the offset where file execution actually

begins with NsPack compressed files.

If we take another example, in this case packed with several NsPack options

applied, we get a different type of calculation.

File Optional Header
Number of sections: 02 Section alignment: 00001000
Address of entry point: 00001010 File alignment: 00000200
Image base: 00400000
Section Headers
Section Virtual Virtual Size of Pointer Characteristics
name size Address raw data raw data
nsp0 00004000 00001000 0000000B 0000001C E0000060
nsp1 0000203D 00005000 00000CFD 00000200 E0000060

Hence we have:

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

��

(0x00001020 - 0x00001000) + 0x0000001B = 0x0000003B

In Windows, the loader rounds the pointer to raw data to 0x00000000 as it is

lower that the ‘file alignment value’ (in this example = 0x00000200). As a consequence,

the loader assumes that the first section, nsp0, starts at file offset 0 and loads the section

accordingly in the memory. So if we round the pointer to raw data, as the loader does, the

file execution start offset is calculated as follows:

(0x00001020 - 0x00001000) + 0x00000000 = 0x00000040

The offset 0x00000040 is located within the DOS header of the PE file. Hence

this means that it can land within the reserved section of the DOS header (this section is

normally filled with zeros). From this location, NsPack inserts a five-byte jump

instruction. The reason is that this will transfer control to code further ahead in the

program.

Note: It is essential that a check is implemented for occasions where the pointer to

raw data is not a multiple of the file alignment. In these instances, this value needs to be

rounded to the nearest multiple and the remaining extra bytes should be passed over. For

files whose file alignment value is not 0x00000200, the loader rounds it to a multiple of

0x00000200.

As noted, the section header names are variable and as can be seen in the section

header table displayed below, these can easily be changed (with a flag in the program) to

a different set of values.

Figure 7.18: Strange section names

Also note that section ‘.nsp1’ (or its equivalent if renamed) can extend beyond the

raw file offset of section ‘.nsp2’

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

��

7.5. The decompression algorithm
NsPack uses a single format for compression/decompression. There seems to be

little difference between the versions of the program for this function. The initial section

of all NsPack 3.7 (and version 3.4) compressed executables is .nsp1 (or the renamed

functional equivalent) with first bytes, 9C,60,E8,00. The basic layout the routine is

displayed below:

 PUSHAD /* PUSHAD saves all the register values onto the stack */

 /*de-compression routine here (see appendix)*/

 POPAD /*POPAD restores the previously saved data */

/* from the stack to the registers */

 JMP OEP /* The Real Original EP */

The Jump to the OEP is made after the de-compression has run and the executable

code has been decompressed.

Figure 7.19: IDA Pro

The de-compressed code is in effect the original code and it does not have a

record that any additional code has been executed prior to arriving at the OEP. The reason

for this is that the instructions in the de-compressed code are expecting certain values.

These may conflict with any errors that might result from variations in the register values.

Consequently, the only instruction that will interact with the values placed on the stack by

PUSHAD is the final POPAD instruction.

7.6. Data Structures
Data is stored as a little endian format. This is the least significant bit (LSB)

precedes the most significant bit (MSB) in memory. When certain options are used, the

COFF line numbers can be removed from the resultant packed executable. COFF symbol

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

�	

table entries for local symbols can also be removed.

7.7. Functions
The main decompression routine utilizes five (5) functions. These have been

disassembled in the Appendices. The entry-point for the decompression function of

NsPack begins with a pushf and pusha. These commands save all the registers (pusha)

which are later restored using a popa (Fig. 7.20).

Figure 7.20: IDA Pro showing the ASM function

The popa/popf listed below shows the end of the decompression routine.

Figure 7.21: The flow graph

Breaking or dumping the decompressed program is possible at the final pop

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

�

instructions. The memory image has been decompressed at this stage. The section, .nsp0

(or equivalent name) is a working area used by the program to load the decompressed

data. The start of this section later becomes the location of the decompressed function.

Figure 7.22: The first section

The section, .nsp2 (or equivalent name) holds the compressed (original)

executable. This data is called by the decompression routine (.nsp1). This routine takes

the data from .nsp2 and copies it (once it is decompressed) into .nsp0.

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

��

7.8. Differences in versions
The differences in versions 3.4 and 3.7 of NsPack are small. This can be seen in

the table below and in the appendix.

Version 3.7 Version 3.4
.nsp1:4AD5C0B3 mov ecx, edi _62i_1:0040D251 mov eax, [ebp-163h]

.nsp1:4AD5C0B5 mov eax, [ebp-1E6h] _62i_1:0040D257 add eax, 5AAh

.nsp1:4AD5C0BB add eax, 5AAh _62i_1:0040D25C call eax

.nsp1:4AD5C0C0 call eax _62i_1:0040D25E pop ebx

.nsp1:4AD5C0C2 pop ebx _62i_1:0040D25F pop edx

.nsp1:4AD5C0C3 pop ecx _62i_1:0040D260 pop ecx

.nsp1:4AD5C0C4 pop edi _62i_1:0040D261 pop edi

Even when separate options are selected, the decompression routine remains the

same (with different section header names and locations).

.nsp1:4AD5C13B lea ecx, [ebp-1CAh] _62i_1:0040D2D8 lea ecx, [ebp-147h]

The differences that result from the options are associated with the location that

the data is mapped to in the executable. The structure varies slightly between versions.

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

��

7.9. NsPack Dependencies
The following section displays the dependencies used by NsPack. PE Explorer

Dependency Scanner is used for this first analysis.

Figure 7.23: The dependencies used by NsPack

The dependencies used by an executable provide us with an insight into the

program. These allow us to see the possible system calls that may be made and if the

program uses network calls and other such features.

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

�

Figure 7.24: Detailed info

PE Explorer can be used to display the executables dependencies. Another option

is to use Dependency Walker (http://www.dependencywalker.com/). As the site states:

�2=2;12;0F�*.982?�6@�.�3?22�BA696AF�A5.A�@0.;@�.;F����/6A�<?
��/6A�*6;1<D@�:<1B92��2E2��199��<0E��@F@��2A0���.;1�/B691@�.
562?.?0560.9�A?22�16.4?.:�<3�.99�12=2;12;A�:<1B92@���<?�2.05
:<1B92�3<B;1��6A�96@A@�.99�A52�3B;0A6<;@�A5.A�.?2�2E=<?A21�/F
A5.A�:<1B92��.;1�D5605�<3�A5<@2�3B;0A6<;@�.?2�.0AB.99F�/26;4
0.9921�/F�<A52?�:<1B92@���;<A52?�C62D�16@=9.F@�A52�:6;6:B:
@2A�<3�?2>B6?21�3692@��.9<;4�D6A5�12A.6921�6;3<?:.A6<;�./<BA
2.05�3692�6;09B16;4�.�3B99�=.A5�A<�A52�3692��/.@2�.11?2@@�
C2?@6<;�;B:/2?@��:.056;2�AF=2��12/B4�6;3<?:.A6<;��.;1
:<?2�

This tool is free and can be used for analyzing the functional dependency tree of a

program.

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

��

Figure 7.25: Using Dependency walker

The decency tree for NsPack is displayed in Fig 7.26. From this we can see no

network modules are loaded.

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

��

Figure 7.26: Detailed info in the tree

Another option is to use the tools from SysInternals to display the executable

information associated with the NsPack compression program. In Fig 7.27 the detailed

information from SysInternal Process Explorer (http://technet.microsoft.com/en-

us/sysinternals/default.aspx) is displayed.

Figure 7.27: Details in Process explorer

Selecting the process and then right-clicking to display the options allows the user

to choose 'properties'.

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

��

Figure 7.28: The strings from the executable in memory

This tab will allow us to see what is running on the system. This is less accurate

then using a dependency scanner, but does help with a dynamic analysis of the running

program.

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

��

8. Conclusion
This paper was written to provide a detailed analysis of NsPack (a formerly semi-

commercial PE packer) written by Liu Xing Ping and distributed from by North Star

Software in China. NsPack is an executable file compressor for Windows 32 and 64 bit

PE based executables. It also has the capability to work on .NET files. In marketing

material and in tests (figure 3.3), it is shown that NsPack is capable of compressing the

size of a 32-bit or 64-bit Windows executable by up to 60%. It is claimed (NsPack, 2009)

that no noticeable performance change will result from this compression. There are better

compression programs, but not all of these support 64-bit exe, dll, ocx and scr files. In

addition, the far lower deployment rate of NsPack when compared to more common

packers (such as UPX) means that less effort has been made to understand and

automatically unpack the algorithm used.

The greatest challenge posed by NsPack is the ability to recompress an already

compressed executable file. NsPack will recompress a PE file that has been compressed

using Upx, Aspack, Pecompact, and several other packers. This slows the execution of

the packed executable considerably, but make reverse engineering of the program

extremely complex. Malware authors use this technique to further obfuscate their

payloads. The techniques have not been widely deployed at present due to the inability of

many anti-virus vendors to effectively decompress a large number of packers in real time.

To help combat this, we analyzed the NsPack binary executable in section 6. The

Entrypoint of NsPack generally makes use of a JMP instruction followed by a PUSHF

and PUSHA command.

The detection and analysis of many common packers remains a mystic art to

many people. With more than 80% of malware using some type of packer, this is

something that needs to change. As was noted at the start of this paper, the intensification

of cybercrime will only end in the development of greater volumes of malware. As these

products are commercialized, the authors are likely to escalate their endeavors (Debrosse,

2009) leading to malicious software that is more difficult to detect and stop. Packers,

allow the cybercriminal to simply increase the costs of detecting their products. This

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

��

results in greater expected returns through a more successful campaign. Consequently, it

is imperative that information security professional understand PE Packers whether they

work in the AV industry or for general commercial ventures. In the former occasion, an

understanding of the packer problem is only likely to become more important. In the

later, knowledge of packers can only aid the security professional to gain a

comprehension of the predicament to its true degree.

For the preponderance of security professionals, an analysis of malware (and

hence packers) will be for the most part critical only when an incident has occurred.

Knowledge as to the processes that an attacker has used to obscure their software can be

the key in any successful incident handling exercise involving malware. As the majority

of security incidents are coming to be based on some form of malware, a good

understanding of how packers work is becoming more and more crucial. As NsPack

remains one of the most common PE Packers with high rates of reported use and

discovery (NsPack is in the top 10 list for PE Packers used on malware samples stored in

the AML database) and with the relatively low accuracy rates for detection, it is important

that security professionals gain a more comprehensive understanding of this and related

packers. For this reason, this paper was written as a broad analysis of NsPack that will

help both the novice and experienced anti-malware professional.

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

�	

9. References
Arbor Networks. (2007) Arbor malware library (AML). http://www.arbornetworks.com.

Chess, D., & White, S,. (2000) "An undetectable computer virus". In Virus Bulletin
Conference, September 2000.

Cohen. F (1987) "Computer viruses: Theory and experiments". In 7th DOD/NBS
Computers and Security Conference, volume 6, pages 22--35, September 1987.

Debrosse, Jeff (2009)"Navigating the New Cybercrime Threatscape" TechNewsWorld

(http://www.ecommercetimes.com/story/68067.html), Viewed, 07 Jan 2010.

Doyle, John F. (2009) "Fall 2009 – Computer Structures C335 Syllabus, ASM"

http://homepages.ius.edu/jfdoyle/C335/syllabusc335fall2009.htm

Guo, Fanglu, Ferrie, Peter & Chiueh, Tzi-cker (2008) "A Study of the Packer Problem

and Its Solutions", Symantec Research Laboratories, Lecture Notes in Computer

Science

Ferrie, Peter. (2006) "Attacks on Virtual Machines". In Proceedings of AVAR Conference.

Iczelion's Win32 Assembly Homepage, http://win32assembly.online.fr/tutorials.html,
Last viewed 20 May 2010.

Jeong, K., & Lee, H. (2008) "Code graph for malware detection". In Information
Networking. ICOIN. International Conference on, Jan 2008.

Kath, Randy (1997) "The Portable Executable File Format from Top to Bottom"

Microsoft Developer Network Technology Group. (Available from:

http://www.pelib.com/resources/kath.txt)

Lyda, R., Hamrock, J. (2007) “Using entropy analysis to find encrypted and packed
malware”, IEEE Security and Privacy (S&P), 5(2), pp. 40-45.

Masta "masta_'s Tutorial on Win95 ASM Coding Part 0"
http://win32assembly.online.fr/w32_00.txt, Last viewed 11 Apr 2010.

North Star Software. (2008) NsPack. http://www.nsdsn.com/eng/index.htm.

Oberheide, J., Bailey, M., & Jahanian F. (2009) "PolyPack: An Automated Online

Packing Service for Optimal Antivirus Evasion", 3rd USENIX Workshop on

Offensive Technologies (WOOT '09)

PEiD, available at http://www.peid.info/.

Protection ID - the ultimate Protection Scanner, available at

http://pid.gamecopyworld.com/.

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

�

Perdisci, R., Lanzi, A., & Lee, W. (2008) “Classification of Packed Executables for

Accurate Computer Virus Detection”, Pattern Recognition Letters, pp. 1941-1946,

29(14).

Pietrek, Matt (1998) "Windows System Programming Secrets", John Wiley & Sons Inc,

USA

Pietrek, Matt (1994) "Peering Inside the PE: A Tour of the Win32 Portable Executable

File Format" Microsoft Developer Network Technology Group. (Available from:

http://msdn.microsoft.com/en-us/library/ms809762.aspx)

Shafiq, M. Zubair,. Tabish, S. Momina., Farooq, Muddassar (2009) "PE-Probe:

Leveraging Packer Detection and Structural Information to Detect Malicious

Portable Executables", Next Generation Intelligent Networks Research Center

(nexGIN RC) National University of Computer & Emerging Sciences (NUCES-

FAST) Islamabad, 44000, Pakistan.

Stewart, Joe. (2006) "OllyBonE v0.1, Break-on-Execute for OllyDbg".

Taha, G., (2008) “Counterattacking the packers”, McAfee Avert Labs, Aylesbury, UK.

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

��

10. Appendix 1 - NsPack Unpacking / De-Compression
The following is the main() unpacking routine from an NsPack 3.7 compressed

executable. This is always the ‘nsp1’ (or the equivalently renamed segment).

.nsp1:4AD5BFFE

.nsp1:4AD5BFFE ; =============== S U B R O U T I N E =======================================

.nsp1:4AD5BFFE

.nsp1:4AD5BFFE

.nsp1:4AD5BFFE public start

.nsp1:4AD5BFFE start proc near

.nsp1:4AD5BFFE

.nsp1:4AD5BFFE ; FUNCTION CHUNK AT .nsp1:4AD5C3BE SIZE 00000009 BYTES

.nsp1:4AD5BFFE

.nsp1:4AD5BFFE pushf

.nsp1:4AD5BFFF pusha

.nsp1:4AD5C000 call $+5

.nsp1:4AD5C005 pop ebp

.nsp1:4AD5C006 sub ebp, 7

.nsp1:4AD5C009 lea ecx, [ebp-1A2h]

.nsp1:4AD5C00F cmp byte ptr [ecx], 1

.nsp1:4AD5C012 jz loc_4AD5C25A

.nsp1:4AD5C018 mov byte ptr [ecx], 1

.nsp1:4AD5C01B mov eax, ebp

.nsp1:4AD5C01D sub eax, [ebp-20Eh]

.nsp1:4AD5C023 mov [ebp-20Eh], eax

.nsp1:4AD5C029 add [ebp-1DEh], eax

.nsp1:4AD5C02F lea esi, [ebp-19Ah]

.nsp1:4AD5C035 add [esi], eax

.nsp1:4AD5C037 push ebp

.nsp1:4AD5C038 push esi

.nsp1:4AD5C039 push 40h

.nsp1:4AD5C03B push 1000h

.nsp1:4AD5C040 push 1000h

.nsp1:4AD5C045 push 0

.nsp1:4AD5C047 call dword ptr [ebp-166h]

.nsp1:4AD5C04D test eax, eax

.nsp1:4AD5C04F jz loc_4AD5C3BE

.nsp1:4AD5C055 mov [ebp-1E6h], eax

.nsp1:4AD5C05B call $+5

.nsp1:4AD5C060 pop ebx

.nsp1:4AD5C061 mov ecx, 367h

.nsp1:4AD5C066 add ebx, ecx

.nsp1:4AD5C068 push eax

.nsp1:4AD5C069 push ebx

.nsp1:4AD5C06A call sub_4AD5C31F

.nsp1:4AD5C06F pop esi

.nsp1:4AD5C070 pop ebp

.nsp1:4AD5C071 mov esi, [esi]

.nsp1:4AD5C073 mov edi, ebp

.nsp1:4AD5C075 add edi, [ebp-21Eh]

.nsp1:4AD5C07B mov ebx, edi

.nsp1:4AD5C07D cmp dword ptr [edi], 0

.nsp1:4AD5C080 jnz short loc_4AD5C08C

.nsp1:4AD5C082 add edi, 4

.nsp1:4AD5C085 mov ecx, 0

.nsp1:4AD5C08A jmp short loc_4AD5C0A2

.nsp1:4AD5C08C ; ---

.nsp1:4AD5C08C

.nsp1:4AD5C08C loc_4AD5C08C: ; CODE XREF: start+82j

.nsp1:4AD5C08C mov ecx, 1

.nsp1:4AD5C091 add edi, [ebx]

.nsp1:4AD5C093 add ebx, 4

.nsp1:4AD5C096

.nsp1:4AD5C096 loc_4AD5C096: ; CODE XREF: start+CFj

.nsp1:4AD5C096 cmp dword ptr [ebx], 0

.nsp1:4AD5C099 jz short loc_4AD5C0CF

.nsp1:4AD5C09B add [ebx], edx

.nsp1:4AD5C09D mov esi, [ebx]

.nsp1:4AD5C09F add edi, [ebx+4]

.nsp1:4AD5C0A2

.nsp1:4AD5C0A2 loc_4AD5C0A2: ; CODE XREF: start+8Cj

.nsp1:4AD5C0A2 push edi

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

��

.nsp1:4AD5C0A3 push ecx

.nsp1:4AD5C0A4 push ebx

.nsp1:4AD5C0A5 push dword ptr [ebp-162h]

.nsp1:4AD5C0AB push dword ptr [ebp-166h]

.nsp1:4AD5C0B1 mov edx, esi

.nsp1:4AD5C0B3 mov ecx, edi

.nsp1:4AD5C0B5 mov eax, [ebp-1E6h]

.nsp1:4AD5C0BB add eax, 5AAh

.nsp1:4AD5C0C0 call eax

.nsp1:4AD5C0C2 pop ebx

.nsp1:4AD5C0C3 pop ecx

.nsp1:4AD5C0C4 pop edi

.nsp1:4AD5C0C5 cmp ecx, 0

.nsp1:4AD5C0C8 jz short loc_4AD5C0CF

.nsp1:4AD5C0CA add ebx, 8

.nsp1:4AD5C0CD jmp short loc_4AD5C096

.nsp1:4AD5C0CF ; ---

.nsp1:4AD5C0CF

.nsp1:4AD5C0CF loc_4AD5C0CF: ; CODE XREF: start+9Bj

.nsp1:4AD5C0CF ; start+CAj

.nsp1:4AD5C0CF push 8000h

.nsp1:4AD5C0D4 push 0

.nsp1:4AD5C0D6 push dword ptr [ebp-1E6h]

.nsp1:4AD5C0DC call dword ptr [ebp-162h]

.nsp1:4AD5C0E2 lea esi, [ebp-1DEh]

.nsp1:4AD5C0E8 mov ecx, [esi+8]

.nsp1:4AD5C0EB lea edx, [esi+10h]

.nsp1:4AD5C0EE mov esi, [esi]

.nsp1:4AD5C0F0 mov edi, esi

.nsp1:4AD5C0F2 cmp ecx, 0

.nsp1:4AD5C0F5 jz short loc_4AD5C136

.nsp1:4AD5C0F7

.nsp1:4AD5C0F7 loc_4AD5C0F7: ; CODE XREF: start+100j

.nsp1:4AD5C0F7 ; start+10Ej

.nsp1:4AD5C0F7 mov al, [edi]

.nsp1:4AD5C0F9 inc edi

.nsp1:4AD5C0FA sub al, 0E8h

.nsp1:4AD5C0FC

.nsp1:4AD5C0FC loc_4AD5C0FC: ; CODE XREF: start+136j

.nsp1:4AD5C0FC cmp al, 1

.nsp1:4AD5C0FE ja short loc_4AD5C0F7

.nsp1:4AD5C100 mov eax, [edi]

.nsp1:4AD5C102 cmp byte ptr [edx+1], 0

.nsp1:4AD5C106 jz short loc_4AD5C11C

.nsp1:4AD5C108 mov bl, [edx]

.nsp1:4AD5C10A cmp [edi], bl

.nsp1:4AD5C10C jnz short loc_4AD5C0F7

.nsp1:4AD5C10E mov bl, [edi+4]

.nsp1:4AD5C111 shr ax, 8

.nsp1:4AD5C115 rol eax, 10h

.nsp1:4AD5C118 xchg al, ah

.nsp1:4AD5C11A jmp short loc_4AD5C126

.nsp1:4AD5C11C ; ---

.nsp1:4AD5C11C

.nsp1:4AD5C11C loc_4AD5C11C: ; CODE XREF: start+108j

.nsp1:4AD5C11C mov bl, [edi+4]

.nsp1:4AD5C11F xchg al, ah

.nsp1:4AD5C121 rol eax, 10h

.nsp1:4AD5C124 xchg al, ah

.nsp1:4AD5C126

.nsp1:4AD5C126 loc_4AD5C126: ; CODE XREF: start+11Cj

.nsp1:4AD5C126 sub eax, edi

.nsp1:4AD5C128 add eax, esi

.nsp1:4AD5C12A mov [edi], eax

.nsp1:4AD5C12C add edi, 5

.nsp1:4AD5C12F sub bl, 0E8h

.nsp1:4AD5C132 mov eax, ebx

.nsp1:4AD5C134 loop loc_4AD5C0FC

.nsp1:4AD5C136

.nsp1:4AD5C136 loc_4AD5C136: ; CODE XREF: start+F7j

.nsp1:4AD5C136 call sub_4AD5C275

.nsp1:4AD5C13B lea ecx, [ebp-1CAh]

.nsp1:4AD5C141 mov eax, [ecx+8]

.nsp1:4AD5C144 cmp eax, 0

.nsp1:4AD5C147 jz loc_4AD5C1CE

.nsp1:4AD5C14D mov esi, edx

.nsp1:4AD5C14F sub esi, [ecx+10h]

.nsp1:4AD5C152 jz short loc_4AD5C1CE

.nsp1:4AD5C154 mov [ecx+10h], esi

.nsp1:4AD5C157 lea esi, [ebp-19Ah]

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

�

.nsp1:4AD5C15D mov esi, [esi]

.nsp1:4AD5C15F lea ebx, [esi-4]

.nsp1:4AD5C162 mov eax, [ecx]

.nsp1:4AD5C164 cmp eax, 1

.nsp1:4AD5C167 jz short loc_4AD5C173

.nsp1:4AD5C169 mov edi, edx

.nsp1:4AD5C16B add edi, [ecx+8]

.nsp1:4AD5C16E mov ecx, [ecx+10h]

.nsp1:4AD5C171 jmp short loc_4AD5C17B

.nsp1:4AD5C173 ; ---

.nsp1:4AD5C173

.nsp1:4AD5C173 loc_4AD5C173: ; CODE XREF: start+169j

.nsp1:4AD5C173 mov edi, esi

.nsp1:4AD5C175 add edi, [ecx+8]

.nsp1:4AD5C178 mov ecx, [ecx+10h]

.nsp1:4AD5C17B

.nsp1:4AD5C17B loc_4AD5C17B: ; CODE XREF: start+173j

.nsp1:4AD5C17B ; start+18Ej

.nsp1:4AD5C17B xor eax, eax

.nsp1:4AD5C17D mov al, [edi]

.nsp1:4AD5C17F inc edi

.nsp1:4AD5C180 or eax, eax

.nsp1:4AD5C182 jz short loc_4AD5C1A4

.nsp1:4AD5C184 cmp al, 0EFh

.nsp1:4AD5C186 ja short loc_4AD5C18E

.nsp1:4AD5C188

.nsp1:4AD5C188 loc_4AD5C188: ; CODE XREF: start+19Dj

.nsp1:4AD5C188 ; start+1A4j

.nsp1:4AD5C188 add ebx, eax

.nsp1:4AD5C18A add [ebx], ecx

.nsp1:4AD5C18C jmp short loc_4AD5C17B

.nsp1:4AD5C18E ; ---

.nsp1:4AD5C18E

.nsp1:4AD5C18E loc_4AD5C18E: ; CODE XREF: start+188j

.nsp1:4AD5C18E and al, 0Fh

.nsp1:4AD5C190 shl eax, 10h

.nsp1:4AD5C193 mov ax, [edi]

.nsp1:4AD5C196 add edi, 2

.nsp1:4AD5C199 or eax, eax

.nsp1:4AD5C19B jnz short loc_4AD5C188

.nsp1:4AD5C19D mov eax, [edi]

.nsp1:4AD5C19F add edi, 4

.nsp1:4AD5C1A2 jmp short loc_4AD5C188

.nsp1:4AD5C1A4 ; ---

.nsp1:4AD5C1A4

.nsp1:4AD5C1A4 loc_4AD5C1A4: ; CODE XREF: start+184j

.nsp1:4AD5C1A4 xor ebx, ebx

.nsp1:4AD5C1A6 xchg edi, esi

.nsp1:4AD5C1A8 mov eax, [esi]

.nsp1:4AD5C1AA cmp eax, 0

.nsp1:4AD5C1AD jz short loc_4AD5C1CE

.nsp1:4AD5C1AF

.nsp1:4AD5C1AF loc_4AD5C1AF: ; CODE XREF: start+1BCj

.nsp1:4AD5C1AF lodsd

.nsp1:4AD5C1B0 or eax, eax

.nsp1:4AD5C1B2 jz short loc_4AD5C1BC

.nsp1:4AD5C1B4 add ebx, eax

.nsp1:4AD5C1B6 add [edi+ebx], cx

.nsp1:4AD5C1BA jmp short loc_4AD5C1AF

.nsp1:4AD5C1BC ; ---

.nsp1:4AD5C1BC

.nsp1:4AD5C1BC loc_4AD5C1BC: ; CODE XREF: start+1B4j

.nsp1:4AD5C1BC xor ebx, ebx

.nsp1:4AD5C1BE shr ecx, 10h

.nsp1:4AD5C1C1

.nsp1:4AD5C1C1 loc_4AD5C1C1: ; CODE XREF: start+1CEj

.nsp1:4AD5C1C1 lodsd

.nsp1:4AD5C1C2 or eax, eax

.nsp1:4AD5C1C4 jz short loc_4AD5C1CE

.nsp1:4AD5C1C6 add ebx, eax

.nsp1:4AD5C1C8 add [edi+ebx], cx

.nsp1:4AD5C1CC jmp short loc_4AD5C1C1

.nsp1:4AD5C1CE ; ---

.nsp1:4AD5C1CE

.nsp1:4AD5C1CE loc_4AD5C1CE: ; CODE XREF: start+149j

.nsp1:4AD5C1CE ; start+154j ...

.nsp1:4AD5C1CE lea esi, [ebp-20Eh]

.nsp1:4AD5C1D4 mov edx, [esi]

.nsp1:4AD5C1D6 lea esi, [ebp-1B2h]

.nsp1:4AD5C1DC mov al, [esi]

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

��

.nsp1:4AD5C1DE cmp al, 1

.nsp1:4AD5C1E0 jnz short loc_4AD5C221

.nsp1:4AD5C1E2 add edx, [esi+4]

.nsp1:4AD5C1E5 push esi

.nsp1:4AD5C1E6 push edx

.nsp1:4AD5C1E7 push esi

.nsp1:4AD5C1E8 push 4

.nsp1:4AD5C1EA push 100h

.nsp1:4AD5C1EF push edx

.nsp1:4AD5C1F0 call dword ptr [ebp-16Ah]

.nsp1:4AD5C1F6 pop edi

.nsp1:4AD5C1F7 pop esi

.nsp1:4AD5C1F8 cmp eax, 1

.nsp1:4AD5C1FB jnz loc_4AD5C3BE

.nsp1:4AD5C201 add esi, 8

.nsp1:4AD5C204 mov ecx, 8

.nsp1:4AD5C209 rep movsb

.nsp1:4AD5C20B sub esi, 0Ch

.nsp1:4AD5C20E sub edi, 8

.nsp1:4AD5C211 push esi

.nsp1:4AD5C212 push dword ptr [esi-4]

.nsp1:4AD5C215 push 100h

.nsp1:4AD5C21A push edi

.nsp1:4AD5C21B call dword ptr [ebp-16Ah]

.nsp1:4AD5C221

.nsp1:4AD5C221 loc_4AD5C221: ; CODE XREF: start+1E2j

.nsp1:4AD5C221 push ebp

.nsp1:4AD5C222 pop ebx

.nsp1:4AD5C223 sub ebx, 15h

.nsp1:4AD5C229 xor ecx, ecx

.nsp1:4AD5C22B mov cl, [ebx]

.nsp1:4AD5C22D cmp cl, 0

.nsp1:4AD5C230 jz short loc_4AD5C25A

.nsp1:4AD5C232 inc ebx

.nsp1:4AD5C233 lea esi, [ebp-20Eh]

.nsp1:4AD5C239 mov edx, [esi]

.nsp1:4AD5C23B

.nsp1:4AD5C23B loc_4AD5C23B: ; CODE XREF: start+25Aj

.nsp1:4AD5C23B push esi

.nsp1:4AD5C23C push ecx

.nsp1:4AD5C23D push ebx

.nsp1:4AD5C23E push edx

.nsp1:4AD5C23F push esi

.nsp1:4AD5C240 push dword ptr [ebx]

.nsp1:4AD5C242 push dword ptr [ebx+4]

.nsp1:4AD5C245 mov eax, [ebx+8]

.nsp1:4AD5C248 add eax, edx

.nsp1:4AD5C24A push eax

.nsp1:4AD5C24B call dword ptr [ebp-16Ah]

.nsp1:4AD5C251 pop edx

.nsp1:4AD5C252 pop ebx

.nsp1:4AD5C253 pop ecx

.nsp1:4AD5C254 pop esi

.nsp1:4AD5C255 add ebx, 0Ch

.nsp1:4AD5C258 loop loc_4AD5C23B

.nsp1:4AD5C25A

.nsp1:4AD5C25A loc_4AD5C25A: ; CODE XREF: start+14j

.nsp1:4AD5C25A ; start+232j

.nsp1:4AD5C25A mov eax, 0

.nsp1:4AD5C25F cmp eax, 0

.nsp1:4AD5C262 jz short loc_4AD5C26E

.nsp1:4AD5C264 popa

.nsp1:4AD5C265 popf

.nsp1:4AD5C266 mov eax, 1

.nsp1:4AD5C26B retn 0Ch

.nsp1:4AD5C26E ; ---

.nsp1:4AD5C26E

.nsp1:4AD5C26E loc_4AD5C26E: ; CODE XREF: start+264j

.nsp1:4AD5C26E popa

.nsp1:4AD5C26F popf

.nsp1:4AD5C270 jmp near ptr 4AD09797h

.nsp1:4AD5C270 start endp

.nsp1:4AD5C270

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

��

10.1. Reversing Assembly to produce C/C++ Code
In this section we cover the reversing process used to take assembled code and

create a C/C++ representation of the code. This is used for automated unpackers that can

be added into other programs as a routine. There are a number of problems that are

associated with reverse engineering code. Some of these are noted below. Assembly code

loses many of the richness of source code when it is compiled. It is generally expected

that comments are lost and would not be recoverable in executable code, however,

classes, macros, templates and include files are also lost during compilation. This does

not mean that we cannot recover many useful aspects of the code. Executable code

(especially when disassembled) retains:

! Dynamic Links

! Functional calls

! Local Variables (although the richness of naming will be lost)

! Parameters

! Switch statements

Variables do not hold data; they are a pointer to the location where the data has

been stored by the system.

10.1.1. Execution Control

The Instruction Pointer (IP) always points to the next instruction when executing.

This is the point where the next or subsequent fetch is to occur. Altering the IP allows

different sections of the algorithm to be executed in place of the following sequential

instruction.

The Intel processor supports the following three execution control methods:

! Sequential

! Unconditional branching

! Conditional branching.

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

��

Sequential branching is the normal execution process. As the name suggests, with

sequential branching, one instruction follows after another in order. This is a standard

fetch/execute cycle with the IP12 incrementing in numerical order.

An Unconditional branch involves the non-sequential execution or redirection of

instructions. An unconditional branch jumps to another address and unconditionally

executes the instructions at that point.

A Conditional branch is also executed non-sequentially. The difference to an

unconditional branch is that the branch to the instruction to be executed occurs

conditionally. This means that where a logical condition returns a true result, the

instruction at the specified address is executed. In the event that a false result is returned,

the instruction is executed sequentially.

10.1.2. Decompiling with HexRays

HexRays has a semi-automated decompiler. We will use this to examine the code

and as an aid to reversing the assembled code into C++.

_62i_1:0040D412 ; =============== S U B R O U T I N E
=======================================
_62i_1:0040D412
_62i_1:0040D412
_62i_1:0040D412 sub_40D412 proc near ; CODE XREF: start:loc_40D2D3p
_62i_1:0040D412 mov esi, [ebp-193h]
_62i_1:0040D418 or esi, esi
_62i_1:0040D41A jz loc_40D4B7
_62i_1:0040D420 mov edx, [ebp-18Bh]
_62i_1:0040D426 add esi, edx
_62i_1:0040D428
_62i_1:0040D428 loc_40D428: ; CODE XREF: sub_40D412+61j
_62i_1:0040D428 cmp dword ptr [esi], 0
_62i_1:0040D42B jnz short loc_40D43B
_62i_1:0040D42D cmp dword ptr [esi+4], 0
_62i_1:0040D431 jnz short loc_40D43B
_62i_1:0040D433 cmp dword ptr [esi+8], 0
_62i_1:0040D437 jnz short loc_40D43B
_62i_1:0040D439 jmp short loc_40D4B5
_62i_1:0040D43B ;

_62i_1:0040D43B
_62i_1:0040D43B loc_40D43B: ; CODE XREF: sub_40D412+19j
_62i_1:0040D43B ; sub_40D412+1Fj ...
_62i_1:0040D43B mov ebx, [esi+8]
_62i_1:0040D43E add ebx, edx
_62i_1:0040D440 push ebx
_62i_1:0040D441 push edx
_62i_1:0040D442 push esi
_62i_1:0040D443 lea edi, [ebp-9Fh]
_62i_1:0040D449 add edi, [esi+4]
_62i_1:0040D44C add esi, 0Ch

���;@A?B0A6<;�=<6;A2?

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

��

_62i_1:0040D44F push edi
_62i_1:0040D450 call dword ptr [ebp-0FFh]
_62i_1:0040D456 pop edi
_62i_1:0040D457 pop edx
_62i_1:0040D458 pop ebx
_62i_1:0040D459 cmp eax, 0
_62i_1:0040D45C jz short loc_40D4B7
_62i_1:0040D45E mov [ebp-183h], eax
_62i_1:0040D464 add edi, [esi]
_62i_1:0040D466 add esi, 4
_62i_1:0040D469
_62i_1:0040D469 loc_40D469: ; CODE XREF: sub_40D412+A1j
_62i_1:0040D469 xor ecx, ecx
_62i_1:0040D46B mov cl, [esi]
_62i_1:0040D46D cmp ecx, 0
_62i_1:0040D470 jnz short loc_40D475
_62i_1:0040D472 inc esi
_62i_1:0040D473 jmp short loc_40D428
_62i_1:0040D475 ;

_62i_1:0040D475
_62i_1:0040D475 loc_40D475: ; CODE XREF: sub_40D412+5Ej
_62i_1:0040D475 mov eax, edi
_62i_1:0040D477 add edi, ecx
_62i_1:0040D479 push edx
_62i_1:0040D47A push ebx
_62i_1:0040D47B push eax
_62i_1:0040D47C cmp byte ptr [eax], 0FFh
_62i_1:0040D47F jnz short loc_40D489
_62i_1:0040D481 inc eax
_62i_1:0040D482 mov eax, [eax]
_62i_1:0040D484 and eax, 7FFFFFFFh
_62i_1:0040D489
_62i_1:0040D489 loc_40D489: ; CODE XREF: sub_40D412+6Dj
_62i_1:0040D489 mov cl, [edi]
_62i_1:0040D48B mov byte ptr [edi], 0
_62i_1:0040D48E push ecx
_62i_1:0040D48F push eax
_62i_1:0040D490 push dword ptr [ebp-183h]
_62i_1:0040D496 call dword ptr [ebp-0FBh]
_62i_1:0040D49C pop ecx
_62i_1:0040D49D pop edx
_62i_1:0040D49E pop ebx
_62i_1:0040D49F pop edx
_62i_1:0040D4A0 cmp eax, 0
_62i_1:0040D4A3 jz short loc_40D4B7
_62i_1:0040D4A5 mov [edi], cl
_62i_1:0040D4A7 mov [esi-4], eax
_62i_1:0040D4AA push dword ptr [esi-4]
_62i_1:0040D4AD pop dword ptr [ebx]
_62i_1:0040D4AF add ebx, 4
_62i_1:0040D4B2 inc esi
_62i_1:0040D4B3 jmp short loc_40D469
_62i_1:0040D4B5 ;

_62i_1:0040D4B5
_62i_1:0040D4B5 loc_40D4B5: ; CODE XREF: sub_40D412+27j
_62i_1:0040D4B5 clc
_62i_1:0040D4B6 retn
_62i_1:0040D4B7 ;

_62i_1:0040D4B7
_62i_1:0040D4B7 loc_40D4B7: ; CODE XREF: sub_40D412+8j
_62i_1:0040D4B7 ; sub_40D412+4Aj ...
_62i_1:0040D4B7 jmp loc_40D55B
_62i_1:0040D4B7 sub_40D412 endp
_62i_1:0040D4B7
_62i_1:0040D4BC

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

��

10.1.3. Decompiled code

The results of using HexRays to decompile the assembled code (10.1.2) are

displayed below. As we stated in 10.1.1, a good deal of information is lost.

void __usercall sub_40D412(int a1<ebp>)
{
 int v1; // esi@1
 int v2; // edx@2
 int v3; // esi@2
 int v4; // eax@7
 int v5; // ebx@7
 int v6; // esi@7
 int v7; // ST0C_4@7
 int v8; // edi@8
 int v9; // esi@8
 int v10; // ecx@9
 int v11; // eax@11
 int v12; // ST14_4@11
 int v13; // eax@13
 char v14; // ST08_1@13
 int v15; // ST14_4@7
 int v16; // ST10_4@7
 int v17; // edi@7
 char v18; // cl@13

 v1 = *(_DWORD *)(a1 - 403);
 if (v1)
 {

 v2 = *(_DWORD *)(a1 - 395);
 v3 = v2 + v1;
 while (*(_DWORD *)v3 || *(_DWORD *)(v3 + 4) || *(_DWORD *)(v3 + 8))
 {

v15 = v2 + *(_DWORD *)(v3 + 8);
v16 = v2;
v7 = v3;
v17 = *(_DWORD *)(v3 + 4) + a1 - 159;
v6 = v3 + 12;
v4 = (*(int (__stdcall **)(int))(a1 - 255))(v17);
v2 = v16;
v5 = v15;
if (!v4)
 break;
*(_DWORD *)(a1 - 387) = v4;
v8 = *(_DWORD *)v6 + v7;
v9 = v6 + 4;
while (1)
{
 v10 = *(_BYTE *)v9;
 if (!v10)

 break;
 v11 = v8;
 v8 += v10;
 v12 = v2;
 if (*(_BYTE *)v11 == -1)

 v11 = *(_DWORD *)(v11 + 1) & 0x7FFFFFFF;
 v18 = *(_BYTE *)v8;
 *(_BYTE *)v8 = 0;
 v14 = v18;
 v13 = (*(int (__stdcall **)(_DWORD, int))(a1 - 251))(*(_DWORD *)(a1 -

387), v11);
 v2 = v12;
 if (!v13)

 return;
 *(_BYTE *)v8 = v14;
 *(_DWORD *)(v9 - 4) = v13;
 *(_DWORD *)v5 = *(_DWORD *)(v9 - 4);

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

�	

 v5 += 4;
 ++v9;
}
v3 = v9 + 1;

 }
 }
}

To workout what we have lost and to recreate this information, we will use the

graphing functions of IDA Pro. As is displayed in 10.1.4, a flow graph provides more

information as to the calls and jumps used by a routine.

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

�

10.1.4. Function 1 – The first function

The first function is used by the decompression routine. It conducts a series of

comparisons against the various registers (using compare functions) and processing the

values using the stack where values in the registers are set to be updated.

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

��

1.1.1. Function Pseudo Code

The following is a low level representation of the MASM function which will be

converted to a High level pseudo code and C++.

1.1.2. ASM
_62i_1:0040D412 ; =============== S U B R O U T I N E
=======================================
_62i_1:0040D412
_62i_1:0040D412
_62i_1:0040D412 sub_40D412 proc near ; CODE XREF: start:loc_40D2D3p
_62i_1:0040D412 mov esi, [ebp-193h]
_62i_1:0040D418 or esi, esi
_62i_1:0040D41A jz loc_40D4B7
_62i_1:0040D420 mov edx, [ebp-18Bh]
_62i_1:0040D426 add esi, edx
_62i_1:0040D428
_62i_1:0040D428 loc_40D428: ; CODE XREF: sub_40D412+61j
_62i_1:0040D428 cmp dword ptr [esi], 0
_62i_1:0040D42B jnz short loc_40D43B
_62i_1:0040D42D cmp dword ptr [esi+4], 0
_62i_1:0040D431 jnz short loc_40D43B
_62i_1:0040D433 cmp dword ptr [esi+8], 0
_62i_1:0040D437 jnz short loc_40D43B
_62i_1:0040D439 jmp short loc_40D4B5
_62i_1:0040D43B ;

_62i_1:0040D43B
_62i_1:0040D43B loc_40D43B: ; CODE XREF: sub_40D412+19j
_62i_1:0040D43B ; sub_40D412+1Fj ...
_62i_1:0040D43B mov ebx, [esi+8]
_62i_1:0040D43E add ebx, edx
_62i_1:0040D440 push ebx
_62i_1:0040D441 push edx
_62i_1:0040D442 push esi
_62i_1:0040D443 lea edi, [ebp-9Fh]
_62i_1:0040D449 add edi, [esi+4]
_62i_1:0040D44C add esi, 0Ch
_62i_1:0040D44F push edi
_62i_1:0040D450 call dword ptr [ebp-0FFh]
_62i_1:0040D456 pop edi
_62i_1:0040D457 pop edx
_62i_1:0040D458 pop ebx
_62i_1:0040D459 cmp eax, 0
_62i_1:0040D45C jz short loc_40D4B7
_62i_1:0040D45E mov [ebp-183h], eax
_62i_1:0040D464 add edi, [esi]
_62i_1:0040D466 add esi, 4
_62i_1:0040D469
_62i_1:0040D469 loc_40D469: ; CODE XREF: sub_40D412+A1j
_62i_1:0040D469 xor ecx, ecx
_62i_1:0040D46B mov cl, [esi]
_62i_1:0040D46D cmp ecx, 0
_62i_1:0040D470 jnz short loc_40D475
_62i_1:0040D472 inc esi
_62i_1:0040D473 jmp short loc_40D428
_62i_1:0040D475 ;

_62i_1:0040D475
_62i_1:0040D475 loc_40D475: ; CODE XREF: sub_40D412+5Ej
_62i_1:0040D475 mov eax, edi
_62i_1:0040D477 add edi, ecx
_62i_1:0040D479 push edx
_62i_1:0040D47A push ebx
_62i_1:0040D47B push eax
_62i_1:0040D47C cmp byte ptr [eax], 0FFh

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

��

_62i_1:0040D47F jnz short loc_40D489
_62i_1:0040D481 inc eax
_62i_1:0040D482 mov eax, [eax]
_62i_1:0040D484 and eax, 7FFFFFFFh
_62i_1:0040D489
_62i_1:0040D489 loc_40D489: ; CODE XREF: sub_40D412+6Dj
_62i_1:0040D489 mov cl, [edi]
_62i_1:0040D48B mov byte ptr [edi], 0
_62i_1:0040D48E push ecx
_62i_1:0040D48F push eax
_62i_1:0040D490 push dword ptr [ebp-183h]
_62i_1:0040D496 call dword ptr [ebp-0FBh]
_62i_1:0040D49C pop ecx
_62i_1:0040D49D pop edx
_62i_1:0040D49E pop ebx
_62i_1:0040D49F pop edx
_62i_1:0040D4A0 cmp eax, 0
_62i_1:0040D4A3 jz short loc_40D4B7
_62i_1:0040D4A5 mov [edi], cl
_62i_1:0040D4A7 mov [esi-4], eax
_62i_1:0040D4AA push dword ptr [esi-4]
_62i_1:0040D4AD pop dword ptr [ebx]
_62i_1:0040D4AF add ebx, 4
_62i_1:0040D4B2 inc esi
_62i_1:0040D4B3 jmp short loc_40D469
_62i_1:0040D4B5 ;

_62i_1:0040D4B5
_62i_1:0040D4B5 loc_40D4B5: ; CODE XREF: sub_40D412+27j
_62i_1:0040D4B5 clc
_62i_1:0040D4B6 retn
_62i_1:0040D4B7 ;

_62i_1:0040D4B7
_62i_1:0040D4B7 loc_40D4B7: ; CODE XREF: sub_40D412+8j
_62i_1:0040D4B7 ; sub_40D412+4Aj ...
_62i_1:0040D4B7 jmp loc_40D55B
_62i_1:0040D4B7 sub_40D412 endp
_62i_1:0040D4B7
_62i_1:0040D4BC

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

�

1.2. Function 2 – Memory Functions

The function processes and copies memory from across sections.

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

��

1.2.1. Function Pseudo Code
//function_2
unsigned int __cdecl sub_40D4BC(int a1, void *a2)
{
 void *v2; // edi@1
 int v3; // esi@1
 unsigned int v4; // eax@5
 int v5; // ecx@5
 unsigned int result; // eax@6
 unsigned int v7; // ecx@6
 unsigned __int8 v8; // cf@11
 char v9; // cf@3
 char v10; // cf@4
 char v11; // cf@5
 char v12; // cf@6
 char v13; // tt@6
 unsigned __int8 v14; // cf@6
 char v15; // cf@6
 signed int v16; // ecx@9

 v3 = a1;
 v2 = a2;

LABEL_2:
 *(_BYTE *)v2 = *(_BYTE *)v3++;
 v2 = (char *)v2 + 1;
 while (1)
 {
 while (1)
 {
 sub_40D53B();
 if (!v9)
 goto LABEL_2;
 sub_40D53B();
 if (v10)
 break;
 sub_40D547();
 if (v16 == 2)
 {
 result = sub_40D545();
 goto LABEL_18;
 }
 ++v3;
 result = sub_40D545();
 if (result >= 0x7D00)
 goto LABEL_16;
 if (result < 0x500)
 {
 if (result > 0x7F)
 goto LABEL_18;
LABEL_16:
 ++v7;
 }
LABEL_17:
 ++v7;
LABEL_18:
 memcpy(v2, (char *)v2 - result, v7);
 v2 = (char *)v2 + v7;
 }
 v4 = sub_40D53B();
 if (!v11)
 break;
 do
 {
 result = sub_40D53B();
 v13 = v12;
 v14 = __MKCADD__(v12, result);
 LOBYTE(result) = v13 + (_BYTE)result;
 v15 = v14 | __MKCADD__(result, result);

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

��

 LOBYTE(result) = 2 * (_BYTE)result;
 }
 while (!v15);
 if ((_BYTE)result)
 goto LABEL_17;
 *(_BYTE *)v2 = result;
 v2 = (char *)v2 + 1;
 }
 LOBYTE(v4) = *(_BYTE *)v3++;
 v8 = __MKCSHR__(v4, 1);
 result = v4 >> 1;
 if (result)
 {
 v7 = v8 + v5 + 2;
 goto LABEL_18;
 }
 return result;
}

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

��

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

��

1.2.2. ASM
_62i_1:0040D4BC ; =============== S U B R O U T I N E
=======================================
_62i_1:0040D4BC
_62i_1:0040D4BC ; Attributes: bp-based frame
_62i_1:0040D4BC
_62i_1:0040D4BC sub_40D4BC proc near ; CODE XREF: start+6Bp
_62i_1:0040D4BC
_62i_1:0040D4BC arg_0 = dword ptr 8
_62i_1:0040D4BC arg_4 = dword ptr 0Ch
_62i_1:0040D4BC
_62i_1:0040D4BC ; FUNCTION CHUNK AT _62i_1:0040D557 SIZE 00000004 BYTES
_62i_1:0040D4BC
_62i_1:0040D4BC push ebp
_62i_1:0040D4BD mov ebp, esp
_62i_1:0040D4BF mov esi, [ebp+arg_0]
_62i_1:0040D4C2 mov edi, [ebp+arg_4]
_62i_1:0040D4C5 cld
_62i_1:0040D4C6 mov dl, 80h
_62i_1:0040D4C8
_62i_1:0040D4C8 loc_40D4C8: ; CODE XREF: sub_40D4BC+12j
_62i_1:0040D4C8 mov sb
_62i_1:0040D4C9
_62i_1:0040D4C9 loc_40D4C9: ; CODE XREF: sub_40D4BC+34j
_62i_1:0040D4C9 ; sub_40D4BC+7Dj
_62i_1:0040D4C9 call sub_40D53B
_62i_1:0040D4CE jnb short loc_40D4C8
_62i_1:0040D4D0 xor ecx, ecx ; Reset ECX = 0
_62i_1:0040D4D2 call sub_40D53B
_62i_1:0040D4D7 jnb short loc_40D4F2
_62i_1:0040D4D9 xor eax, eax ; Reset EAX = 0
_62i_1:0040D4DB call sub_40D53B
_62i_1:0040D4E0 jnb short loc_40D503
_62i_1:0040D4E2 mov al, 10h
_62i_1:0040D4E4
_62i_1:0040D4E4 loc_40D4E4: ; CODE XREF: sub_40D4BC+2Fj
_62i_1:0040D4E4 call sub_40D53B
_62i_1:0040D4E9 adc al, al
_62i_1:0040D4EB jnb short loc_40D4E4
_62i_1:0040D4ED jnz short loc_40D530
_62i_1:0040D4EF stosb
_62i_1:0040D4F0 jmp short loc_40D4C9
_62i_1:0040D4F2 ;

_62i_1:0040D4F2
_62i_1:0040D4F2 loc_40D4F2: ; CODE XREF: sub_40D4BC+1Bj
_62i_1:0040D4F2 call sub_40D547
_62i_1:0040D4F7 dec ecx
_62i_1:0040D4F8 loop loc_40D50F
_62i_1:0040D4FA mov eax, ebp
_62i_1:0040D4FC call sub_40D545
_62i_1:0040D501 jmp short loc_40D531
_62i_1:0040D503 ;

_62i_1:0040D503
_62i_1:0040D503 loc_40D503: ; CODE XREF: sub_40D4BC+24j
_62i_1:0040D503 lodsb
_62i_1:0040D504 shr eax, 1
_62i_1:0040D506 jz short loc_40D557
_62i_1:0040D508 adc ecx, 2
_62i_1:0040D50B mov ebp, eax
_62i_1:0040D50D jmp short loc_40D531
_62i_1:0040D50F ;

_62i_1:0040D50F
_62i_1:0040D50F loc_40D50F: ; CODE XREF: sub_40D4BC+3Cj
_62i_1:0040D50F xchg eax, ecx
_62i_1:0040D510 dec eax
_62i_1:0040D511 shl eax, 8

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

��

_62i_1:0040D514 lodsb
_62i_1:0040D515 mov ebp, eax
_62i_1:0040D517 call sub_40D545
_62i_1:0040D51C cmp eax, 7D00h
_62i_1:0040D521 jnb short loc_40D52F
_62i_1:0040D523 cmp eax, 500h
_62i_1:0040D528 jnb short loc_40D530
_62i_1:0040D52A cmp eax, 7Fh
_62i_1:0040D52D ja short loc_40D531
_62i_1:0040D52F
_62i_1:0040D52F loc_40D52F: ; CODE XREF: sub_40D4BC+65j
_62i_1:0040D52F inc ecx
_62i_1:0040D530
_62i_1:0040D530 loc_40D530: ; CODE XREF: sub_40D4BC+31j
_62i_1:0040D530 ; sub_40D4BC+6Cj
_62i_1:0040D530 inc ecx
_62i_1:0040D531
_62i_1:0040D531 loc_40D531: ; CODE XREF: sub_40D4BC+45j
_62i_1:0040D531 ; sub_40D4BC+51j ...
_62i_1:0040D531 push esi
_62i_1:0040D532 mov esi, edi
_62i_1:0040D534 sub esi, eax
_62i_1:0040D536 rep movsb
_62i_1:0040D538 pop esi
_62i_1:0040D539 jmp short loc_40D4C9
_62i_1:0040D539 sub_40D4BC endp
_62i_1:0040D539

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

		

10.2. Function 3 – Math
This function is called from within Function_5 (below) as well as from within

Function_2 (above). ESI is the 32 bit Data Pointer for source of string operations.

ADC is a large number addition function – used here to double the DL register.

The DL general purpose register is the 8 bit I/O Pointer value associated with the 32 bit

EDX register.

1.2.3. Function Pseudo Code
DL = DL +DL (Double DL or DL = 2x DL)
IF (DL <> 0) (Not Equal to 0, EFlag, ZF = 0)

[ESI] = [ESI] + DL ([ESI] is the memory location pointed to by the value held
In the ESI register)

ESI = ESI + 1
DL = 2x DL (or, DL = DL +DL)

Return
__int64 __usercall sub_40D53B<edx:eax>(char a1<dl>, int a2<esi>)
{
 unsigned __int8 v2; // cf@1
 __int64 result; // qax@1
 char v4; // zf@1

 v2 = __MKCADD__(a1, a1);
 v4 = 2 * a1 == 0;
 BYTE4(result) = 2 * a1;
 if (v4)
 BYTE4(result) = 2 * (v2 + *(_BYTE *)a2);
 return result;
}

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

	

1.2.4. ASM
_62i_1:0040D53B ; =============== S U B R O U T I N E
=======================================
_62i_1:0040D53B
_62i_1:0040D53B
_62i_1:0040D53B sub_40D53B proc near ; CODE XREF:
sub_40D4BC:loc_40D4C9p
_62i_1:0040D53B ; sub_40D4BC+16p ...
_62i_1:0040D53B add dl, dl
_62i_1:0040D53D jnz short locret_40D544
_62i_1:0040D53F mov dl, [esi]

;add to the memory pointed to by ESI
; the contents of dl

_62i_1:0040D541 inc esi
_62i_1:0040D542 adc dl, dl
_62i_1:0040D544
_62i_1:0040D544 locret_40D544: ; CODE XREF: sub_40D53B+2j
_62i_1:0040D544 retn
_62i_1:0040D544 sub_40D53B endp
_62i_1:0040D544

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

	�

10.3. Function 4 – Clear ECX
The function below clears the ECX register. This sets the ECX register = 0x000.

ECX is a 32 bit register that is used as a counter for string and loop functions.

10.3.1. Function Pseudo Code

XOR ECX, ECX (Clear the ECX register)

10.3.2. ASM

_62i_1:0040D545 ; =============== S U B R O U T I N E
=======================================
_62i_1:0040D545
_62i_1:0040D545
_62i_1:0040D545 sub_40D545 proc near ; CODE XREF: sub_40D4BC+40p
_62i_1:0040D545 ; sub_40D4BC+5Bp
_62i_1:0040D545 xor ecx, ecx
_62i_1:0040D545 sub_40D545 endp ;
_62i_1:0040D545

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

	�

10.4. Function 5 – Add ECX register
The function below starts by incrementing ECX ()- this is adding 1 to ECX then

looping while calling Function_3 and doubling the ECX register.

ECX is a 32 bit register that is used as a counter for string and loop functions.

ADC is a large number addition function – used here to double the register.

10.4.1. Function Pseudo Code

ECX = ECX +1
Do While (ECX < Function_3(Returned)) (Carry Flag; EFLAGS,

CF = 1)
Run Function_3
ECX = ECX x2 (ADC is a doubling function for large

numbers)
Run Function_3

Return
int __cdecl sub_40D547()
{
 int result; // eax@1
 char v1; // cf@1

 do
 {
 sub_40D53B();
 result = sub_40D53B();
 }

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

	

 while (v1);
 return result;
}

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

	�

1.2.5. ASM

_62i_1:0040D547 ; =============== S U B R O U T I N E
=======================================
_62i_1:0040D547
_62i_1:0040D547
_62i_1:0040D547 sub_40D547 proc near ; CODE XREF:
sub_40D4BC:loc_40D4F2p
_62i_1:0040D547 inc ecx
_62i_1:0040D548
_62i_1:0040D548 loc_40D548: ; CODE XREF: sub_40D547+Dj
_62i_1:0040D548 call sub_40D53B
_62i_1:0040D54D adc ecx, ecx
_62i_1:0040D54F call sub_40D53B
_62i_1:0040D554 jb short loc_40D548

; continue execution from loc_40D548:
; if result was less than

_62i_1:0040D556 retn
_62i_1:0040D556 sub_40D547 endp

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

	�

10.5. Comparison of Main() Functions between NsPack 3.4
& 3.7

Version 3.7 Version 3.4

.nsp1:4AD5BFFE _62i_1:0040D19B

.nsp1:4AD5BFFE ; =============== S U B R
O U T I N E ===

_62i_1:0040D19B ; =============== S U B R
O U T I N E ===

.nsp1:4AD5BFFE _62i_1:0040D19B

.nsp1:4AD5BFFE _62i_1:0040D19B

.nsp1:4AD5BFFE public start _62i_1:0040D19B public start

.nsp1:4AD5BFFE start proc near _62i_1:0040D19B start proc near

.nsp1:4AD5BFFE _62i_1:0040D19B

.nsp1:4AD5BFFE ; FUNCTION CHUNK AT

.nsp1:4AD5C3BE SIZE 00000009 BYTES
_62i_1:0040D19B ; FUNCTION CHUNK AT
_62i_1:0040D55B SIZE 00000009 BYTES

.nsp1:4AD5BFFE _62i_1:0040D19B

.nsp1:4AD5BFFE pushf _62i_1:0040D19B pushf

.nsp1:4AD5BFFF pusha _62i_1:0040D19C pusha

.nsp1:4AD5C000 call $+5 _62i_1:0040D19D call $+5

.nsp1:4AD5C005 pop ebp _62i_1:0040D1A2 pop ebp

.nsp1:4AD5C006 sub ebp, 7 _62i_1:0040D1A3 sub ebp, 7

.nsp1:4AD5C009 lea ecx, [ebp-1A2h] _62i_1:0040D1A6 lea eax, [ebp-11Fh]

.nsp1:4AD5C00F cmp byte ptr [ecx], 1 _62i_1:0040D1AC cmp byte ptr [eax], 1

.nsp1:4AD5C012 jz loc_4AD5C25A _62i_1:0040D1AF jz loc_40D3F7

.nsp1:4AD5C018 mov byte ptr [ecx], 1 _62i_1:0040D1B5 mov byte ptr [eax], 1

.nsp1:4AD5C01B mov eax, ebp _62i_1:0040D1B8 mov edx, ebp

.nsp1:4AD5C01D sub eax, [ebp-20Eh] _62i_1:0040D1BA sub edx, [ebp-18Bh]

.nsp1:4AD5C023 mov [ebp-20Eh], eax _62i_1:0040D1C0 mov [ebp-18Bh], edx

.nsp1:4AD5C029 add [ebp-1DEh], eax _62i_1:0040D1C6 add [ebp-15Bh], edx

.nsp1:4AD5C02F lea esi, [ebp-19Ah] _62i_1:0040D1CC lea esi, [ebp-117h]

.nsp1:4AD5C035 add [esi], eax _62i_1:0040D1D2 add [esi], edx

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

	�

.nsp1:4AD5C037 push ebp

.nsp1:4AD5C038 push esi _62i_1:0040D1D4 pusha

.nsp1:4AD5C039 push 40h _62i_1:0040D1D5 push 40h

.nsp1:4AD5C03B push 1000h _62i_1:0040D1D7 push 1000h

.nsp1:4AD5C040 push 1000h _62i_1:0040D1DC push 1000h

.nsp1:4AD5C045 push 0 _62i_1:0040D1E1 push 0

.nsp1:4AD5C047 call dword ptr [ebp-166h] _62i_1:0040D1E3 call dword ptr [ebp-0F3h]

.nsp1:4AD5C04D test eax, eax _62i_1:0040D1E9 test eax, eax

.nsp1:4AD5C04F jz loc_4AD5C3BE _62i_1:0040D1EB jz loc_40D55B

.nsp1:4AD5C055 mov [ebp-1E6h], eax _62i_1:0040D1F1 mov [ebp-163h], eax

.nsp1:4AD5C05B call $+5 _62i_1:0040D1F7 call $+5

.nsp1:4AD5C060 pop ebx _62i_1:0040D1FC pop ebx

.nsp1:4AD5C061 mov ecx, 367h _62i_1:0040D1FD mov ecx, 368h

.nsp1:4AD5C066 add ebx, ecx _62i_1:0040D202 add ebx, ecx

.nsp1:4AD5C068 push eax _62i_1:0040D204 push eax

.nsp1:4AD5C069 push ebx _62i_1:0040D205 push ebx

.nsp1:4AD5C06A call sub_4AD5C31F _62i_1:0040D206 call sub_40D4BC

.nsp1:4AD5C06F pop esi

.nsp1:4AD5C070 pop ebp _62i_1:0040D20B popa

.nsp1:4AD5C071 mov esi, [esi] _62i_1:0040D20C mov esi, [esi]

.nsp1:4AD5C073 mov edi, ebp _62i_1:0040D20E mov edi, ebp

.nsp1:4AD5C075 add edi, [ebp-21Eh] _62i_1:0040D210 add edi, [ebp-19Bh]

.nsp1:4AD5C07B mov ebx, edi _62i_1:0040D216 mov ebx, edi

.nsp1:4AD5C07D cmp dword ptr [edi], 0 _62i_1:0040D218 cmp dword ptr [edi], 0

.nsp1:4AD5C080 jnz short loc_4AD5C08C _62i_1:0040D21B jnz short loc_40D227

.nsp1:4AD5C082 add edi, 4 _62i_1:0040D21D add edi, 4

.nsp1:4AD5C085 mov ecx, 0 _62i_1:0040D220 mov ecx, 0

.nsp1:4AD5C08A jmp short loc_4AD5C0A2 _62i_1:0040D225 jmp short loc_40D23D

.nsp1:4AD5C08C ; --- _62i_1:0040D227 ; ---

.nsp1:4AD5C08C _62i_1:0040D227

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

	�

.nsp1:4AD5C08C loc_4AD5C08C: ;
CODE XREF: start+82j

_62i_1:0040D227 loc_40D227: ; CODE
XREF: start+80j

.nsp1:4AD5C08C mov ecx, 1 _62i_1:0040D227 mov ecx, 1

.nsp1:4AD5C091 add edi, [ebx] _62i_1:0040D22C add edi, [ebx]

.nsp1:4AD5C093 add ebx, 4 _62i_1:0040D22E add ebx, 4

.nsp1:4AD5C096 _62i_1:0040D231

.nsp1:4AD5C096 loc_4AD5C096: ; CODE
XREF: start+CFj

_62i_1:0040D231 loc_40D231: ; CODE
XREF: start+CFj

.nsp1:4AD5C096 cmp dword ptr [ebx], 0 _62i_1:0040D231 cmp dword ptr [ebx], 0

.nsp1:4AD5C099 jz short loc_4AD5C0CF _62i_1:0040D234 jz short loc_40D26C

.nsp1:4AD5C09B add [ebx], edx _62i_1:0040D236 add [ebx], edx

.nsp1:4AD5C09D mov esi, [ebx] _62i_1:0040D238 mov esi, [ebx]

.nsp1:4AD5C09F add edi, [ebx+4] _62i_1:0040D23A add edi, [ebx+4]

.nsp1:4AD5C0A2 _62i_1:0040D23D

.nsp1:4AD5C0A2 loc_4AD5C0A2: ;
CODE XREF: start+8Cj

_62i_1:0040D23D loc_40D23D: ; CODE
XREF: start+8Aj

.nsp1:4AD5C0A2 push edi _62i_1:0040D23D push edi

.nsp1:4AD5C0A3 push ecx _62i_1:0040D23E push ecx

_62i_1:0040D23F push edx

.nsp1:4AD5C0A4 push ebx _62i_1:0040D240 push ebx

.nsp1:4AD5C0A5 push dword ptr [ebp-162h] _62i_1:0040D241 push dword ptr [ebp-0EFh]

.nsp1:4AD5C0AB push dword ptr [ebp-166h] _62i_1:0040D247 push dword ptr [ebp-0F3h]

.nsp1:4AD5C0B1 mov edx, esi _62i_1:0040D24D mov edx, esi

.nsp1:4AD5C0B3 mov ecx, edi _62i_1:0040D24F mov ecx, edi

.nsp1:4AD5C0B5 mov eax, [ebp-1E6h] _62i_1:0040D251 mov eax, [ebp-163h]

.nsp1:4AD5C0BB add eax, 5AAh _62i_1:0040D257 add eax, 5AAh

.nsp1:4AD5C0C0 call eax _62i_1:0040D25C call eax

.nsp1:4AD5C0C2 pop ebx _62i_1:0040D25E pop ebx

_62i_1:0040D25F pop edx

.nsp1:4AD5C0C3 pop ecx _62i_1:0040D260 pop ecx

.nsp1:4AD5C0C4 pop edi _62i_1:0040D261 pop edi

.nsp1:4AD5C0C5 cmp ecx, 0 _62i_1:0040D262 cmp ecx, 0

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

	�

.nsp1:4AD5C0C8 jz short loc_4AD5C0CF _62i_1:0040D265 jz short loc_40D26C

.nsp1:4AD5C0CA add ebx, 8 _62i_1:0040D267 add ebx, 8

.nsp1:4AD5C0CD jmp short loc_4AD5C096 _62i_1:0040D26A jmp short loc_40D231

.nsp1:4AD5C0CF ; --- _62i_1:0040D26C ; ---

.nsp1:4AD5C0CF _62i_1:0040D26C

.nsp1:4AD5C0CF loc_4AD5C0CF: ;
CODE XREF: start+9Bj

_62i_1:0040D26C loc_40D26C: ; CODE
XREF: start+99j

.nsp1:4AD5C0CF ; start+CAj _62i_1:0040D26C ; start+CAj

.nsp1:4AD5C0CF push 8000h _62i_1:0040D26C push 8000h

.nsp1:4AD5C0D4 push 0 _62i_1:0040D271 push 0

.nsp1:4AD5C0D6 push dword ptr [ebp-1E6h] _62i_1:0040D273 push dword ptr [ebp-163h]

.nsp1:4AD5C0DC call dword ptr [ebp-162h] _62i_1:0040D279 call dword ptr [ebp-0EFh]

.nsp1:4AD5C0E2 lea esi, [ebp-1DEh] _62i_1:0040D27F lea esi, [ebp-15Bh]

.nsp1:4AD5C0E8 mov ecx, [esi+8] _62i_1:0040D285 mov ecx, [esi+8]

.nsp1:4AD5C0EB lea edx, [esi+10h] _62i_1:0040D288 lea edx, [esi+10h]

.nsp1:4AD5C0EE mov esi, [esi] _62i_1:0040D28B mov esi, [esi]

.nsp1:4AD5C0F0 mov edi, esi _62i_1:0040D28D mov edi, esi

.nsp1:4AD5C0F2 cmp ecx, 0 _62i_1:0040D28F cmp ecx, 0

.nsp1:4AD5C0F5 jz short loc_4AD5C136 _62i_1:0040D292 jz short loc_40D2D3

.nsp1:4AD5C0F7 _62i_1:0040D294

.nsp1:4AD5C0F7 loc_4AD5C0F7: ; CODE
XREF: start+100j

_62i_1:0040D294 loc_40D294: ; CODE
XREF: start+100j

.nsp1:4AD5C0F7 ; start+10Ej _62i_1:0040D294 ; start+10Ej

.nsp1:4AD5C0F7 mov al, [edi] _62i_1:0040D294 mov al, [edi]

.nsp1:4AD5C0F9 inc edi _62i_1:0040D296 inc edi

.nsp1:4AD5C0FA sub al, 0E8h _62i_1:0040D297 sub al, 0E8h

.nsp1:4AD5C0FC _62i_1:0040D299

.nsp1:4AD5C0FC loc_4AD5C0FC: ;
CODE XREF: start+136j

_62i_1:0040D299 loc_40D299: ; CODE
XREF: start+136j

.nsp1:4AD5C0FC cmp al, 1 _62i_1:0040D299 cmp al, 1

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

	

.nsp1:4AD5C0FE ja short loc_4AD5C0F7 _62i_1:0040D29B ja short loc_40D294

.nsp1:4AD5C100 mov eax, [edi] _62i_1:0040D29D mov eax, [edi]

.nsp1:4AD5C102 cmp byte ptr [edx+1], 0 _62i_1:0040D29F cmp byte ptr [edx+1], 0

.nsp1:4AD5C106 jz short loc_4AD5C11C _62i_1:0040D2A3 jz short loc_40D2B9

.nsp1:4AD5C108 mov bl, [edx] _62i_1:0040D2A5 mov bl, [edx]

.nsp1:4AD5C10A cmp [edi], bl _62i_1:0040D2A7 cmp [edi], bl

.nsp1:4AD5C10C jnz short loc_4AD5C0F7 _62i_1:0040D2A9 jnz short loc_40D294

.nsp1:4AD5C10E mov bl, [edi+4] _62i_1:0040D2AB mov bl, [edi+4]

.nsp1:4AD5C111 shr ax, 8 _62i_1:0040D2AE shr ax, 8

.nsp1:4AD5C115 rol eax, 10h _62i_1:0040D2B2 rol eax, 10h

.nsp1:4AD5C118 xchg al, ah _62i_1:0040D2B5 xchg al, ah

.nsp1:4AD5C11A jmp short loc_4AD5C126 _62i_1:0040D2B7 jmp short loc_40D2C3

.nsp1:4AD5C11C ; --- _62i_1:0040D2B9 ; ---

.nsp1:4AD5C11C _62i_1:0040D2B9

.nsp1:4AD5C11C loc_4AD5C11C: ;
CODE XREF: start+108j

_62i_1:0040D2B9 loc_40D2B9: ; CODE
XREF: start+108j

.nsp1:4AD5C11C mov bl, [edi+4] _62i_1:0040D2B9 mov bl, [edi+4]

.nsp1:4AD5C11F xchg al, ah _62i_1:0040D2BC xchg al, ah

.nsp1:4AD5C121 rol eax, 10h _62i_1:0040D2BE rol eax, 10h

.nsp1:4AD5C124 xchg al, ah _62i_1:0040D2C1 xchg al, ah

.nsp1:4AD5C126 _62i_1:0040D2C3

.nsp1:4AD5C126 loc_4AD5C126: ; CODE
XREF: start+11Cj

_62i_1:0040D2C3 loc_40D2C3: ; CODE
XREF: start+11Cj

.nsp1:4AD5C126 sub eax, edi _62i_1:0040D2C3 sub eax, edi

.nsp1:4AD5C128 add eax, esi _62i_1:0040D2C5 add eax, esi

.nsp1:4AD5C12A mov [edi], eax _62i_1:0040D2C7 mov [edi], eax

.nsp1:4AD5C12C add edi, 5 _62i_1:0040D2C9 add edi, 5

.nsp1:4AD5C12F sub bl, 0E8h _62i_1:0040D2CC sub bl, 0E8h

.nsp1:4AD5C132 mov eax, ebx _62i_1:0040D2CF mov eax, ebx

.nsp1:4AD5C134 loop loc_4AD5C0FC _62i_1:0040D2D1 loop loc_40D299

.nsp1:4AD5C136 _62i_1:0040D2D3

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

.nsp1:4AD5C136 loc_4AD5C136: ; CODE
XREF: start+F7j

_62i_1:0040D2D3 loc_40D2D3: ; CODE
XREF: start+F7j

.nsp1:4AD5C136 call sub_4AD5C275 _62i_1:0040D2D3 call sub_40D412

.nsp1:4AD5C13B lea ecx, [ebp-1CAh] _62i_1:0040D2D8 lea ecx, [ebp-147h]

.nsp1:4AD5C141 mov eax, [ecx+8] _62i_1:0040D2DE mov eax, [ecx+8]

.nsp1:4AD5C144 cmp eax, 0 _62i_1:0040D2E1 cmp eax, 0

.nsp1:4AD5C147 jz loc_4AD5C1CE _62i_1:0040D2E4 jz loc_40D36B

.nsp1:4AD5C14D mov esi, edx _62i_1:0040D2EA mov esi, edx

.nsp1:4AD5C14F sub esi, [ecx+10h] _62i_1:0040D2EC sub esi, [ecx+10h]

.nsp1:4AD5C152 jz short loc_4AD5C1CE _62i_1:0040D2EF jz short loc_40D36B

.nsp1:4AD5C154 mov [ecx+10h], esi _62i_1:0040D2F1 mov [ecx+10h], esi

.nsp1:4AD5C157 lea esi, [ebp-19Ah] _62i_1:0040D2F4 lea esi, [ebp-117h]

.nsp1:4AD5C15D mov esi, [esi] _62i_1:0040D2FA mov esi, [esi]

.nsp1:4AD5C15F lea ebx, [esi-4] _62i_1:0040D2FC lea ebx, [esi-4]

.nsp1:4AD5C162 mov eax, [ecx] _62i_1:0040D2FF mov eax, [ecx]

.nsp1:4AD5C164 cmp eax, 1 _62i_1:0040D301 cmp eax, 1

.nsp1:4AD5C167 jz short loc_4AD5C173 _62i_1:0040D304 jz short loc_40D310

.nsp1:4AD5C169 mov edi, edx _62i_1:0040D306 mov edi, edx

.nsp1:4AD5C16B add edi, [ecx+8] _62i_1:0040D308 add edi, [ecx+8]

.nsp1:4AD5C16E mov ecx, [ecx+10h] _62i_1:0040D30B mov ecx, [ecx+10h]

.nsp1:4AD5C171 jmp short loc_4AD5C17B _62i_1:0040D30E jmp short loc_40D318

.nsp1:4AD5C173 ; --- _62i_1:0040D310 ; ---

.nsp1:4AD5C173 _62i_1:0040D310

.nsp1:4AD5C173 loc_4AD5C173: ; CODE
XREF: start+169j

_62i_1:0040D310 loc_40D310: ; CODE
XREF: start+169j

.nsp1:4AD5C173 mov edi, esi _62i_1:0040D310 mov edi, esi

.nsp1:4AD5C175 add edi, [ecx+8] _62i_1:0040D312 add edi, [ecx+8]

.nsp1:4AD5C178 mov ecx, [ecx+10h] _62i_1:0040D315 mov ecx, [ecx+10h]

.nsp1:4AD5C17B _62i_1:0040D318

.nsp1:4AD5C17B loc_4AD5C17B: ;
CODE XREF: start+173j

_62i_1:0040D318 loc_40D318: ; CODE
XREF: start+173j

.nsp1:4AD5C17B ; start+18Ej _62i_1:0040D318 ; start+18Ej

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

�

.nsp1:4AD5C17B xor eax, eax _62i_1:0040D318 xor eax, eax

.nsp1:4AD5C17D mov al, [edi] _62i_1:0040D31A mov al, [edi]

.nsp1:4AD5C17F inc edi _62i_1:0040D31C inc edi

.nsp1:4AD5C180 or eax, eax _62i_1:0040D31D or eax, eax

.nsp1:4AD5C182 jz short loc_4AD5C1A4 _62i_1:0040D31F jz short loc_40D341

.nsp1:4AD5C184 cmp al, 0EFh _62i_1:0040D321 cmp al, 0EFh

.nsp1:4AD5C186 ja short loc_4AD5C18E _62i_1:0040D323 ja short loc_40D32B

.nsp1:4AD5C188 _62i_1:0040D325

.nsp1:4AD5C188 loc_4AD5C188: ; CODE
XREF: start+19Dj

_62i_1:0040D325 loc_40D325: ; CODE
XREF: start+19Dj

.nsp1:4AD5C188 ; start+1A4j _62i_1:0040D325 ; start+1A4j

.nsp1:4AD5C188 add ebx, eax _62i_1:0040D325 add ebx, eax

.nsp1:4AD5C18A add [ebx], ecx _62i_1:0040D327 add [ebx], ecx

.nsp1:4AD5C18C jmp short loc_4AD5C17B _62i_1:0040D329 jmp short loc_40D318

.nsp1:4AD5C18E ; --- _62i_1:0040D32B ; ---

.nsp1:4AD5C18E _62i_1:0040D32B

.nsp1:4AD5C18E loc_4AD5C18E: ;
CODE XREF: start+188j

_62i_1:0040D32B loc_40D32B: ; CODE
XREF: start+188j

.nsp1:4AD5C18E and al, 0Fh _62i_1:0040D32B and al, 0Fh

.nsp1:4AD5C190 shl eax, 10h _62i_1:0040D32D shl eax, 10h

.nsp1:4AD5C193 mov ax, [edi] _62i_1:0040D330 mov ax, [edi]

.nsp1:4AD5C196 add edi, 2 _62i_1:0040D333 add edi, 2

.nsp1:4AD5C199 or eax, eax _62i_1:0040D336 or eax, eax

.nsp1:4AD5C19B jnz short loc_4AD5C188 _62i_1:0040D338 jnz short loc_40D325

.nsp1:4AD5C19D mov eax, [edi] _62i_1:0040D33A mov eax, [edi]

.nsp1:4AD5C19F add edi, 4 _62i_1:0040D33C add edi, 4

.nsp1:4AD5C1A2 jmp short loc_4AD5C188 _62i_1:0040D33F jmp short loc_40D325

.nsp1:4AD5C1A4 ; --- _62i_1:0040D341 ; ---

.nsp1:4AD5C1A4 _62i_1:0040D341

.nsp1:4AD5C1A4 loc_4AD5C1A4: ; _62i_1:0040D341 loc_40D341: ; CODE

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

�

CODE XREF: start+184j XREF: start+184j

.nsp1:4AD5C1A4 xor ebx, ebx _62i_1:0040D341 xor ebx, ebx

.nsp1:4AD5C1A6 xchg edi, esi _62i_1:0040D343 xchg edi, esi

.nsp1:4AD5C1A8 mov eax, [esi] _62i_1:0040D345 mov eax, [esi]

.nsp1:4AD5C1AA cmp eax, 0 _62i_1:0040D347 cmp eax, 0

.nsp1:4AD5C1AD jz short loc_4AD5C1CE _62i_1:0040D34A jz short loc_40D36B

.nsp1:4AD5C1AF _62i_1:0040D34C

.nsp1:4AD5C1AF loc_4AD5C1AF: ;
CODE XREF: start+1BCj

_62i_1:0040D34C loc_40D34C: ; CODE
XREF: start+1BCj

.nsp1:4AD5C1AF lodsd _62i_1:0040D34C lodsd

.nsp1:4AD5C1B0 or eax, eax _62i_1:0040D34D or eax, eax

.nsp1:4AD5C1B2 jz short loc_4AD5C1BC _62i_1:0040D34F jz short loc_40D359

.nsp1:4AD5C1B4 add ebx, eax _62i_1:0040D351 add ebx, eax

.nsp1:4AD5C1B6 add [edi+ebx], cx _62i_1:0040D353 add [edi+ebx], cx

.nsp1:4AD5C1BA jmp short loc_4AD5C1AF _62i_1:0040D357 jmp short loc_40D34C

.nsp1:4AD5C1BC ; --- _62i_1:0040D359 ; ---

.nsp1:4AD5C1BC _62i_1:0040D359

.nsp1:4AD5C1BC loc_4AD5C1BC: ;
CODE XREF: start+1B4j

_62i_1:0040D359 loc_40D359: ; CODE
XREF: start+1B4j

.nsp1:4AD5C1BC xor ebx, ebx _62i_1:0040D359 xor ebx, ebx

.nsp1:4AD5C1BE shr ecx, 10h _62i_1:0040D35B shr ecx, 10h

.nsp1:4AD5C1C1 _62i_1:0040D35E

.nsp1:4AD5C1C1 loc_4AD5C1C1: ;
CODE XREF: start+1CEj

_62i_1:0040D35E loc_40D35E: ; CODE
XREF: start+1CEj

.nsp1:4AD5C1C1 lodsd _62i_1:0040D35E lodsd

.nsp1:4AD5C1C2 or eax, eax _62i_1:0040D35F or eax, eax

.nsp1:4AD5C1C4 jz short loc_4AD5C1CE _62i_1:0040D361 jz short loc_40D36B

.nsp1:4AD5C1C6 add ebx, eax _62i_1:0040D363 add ebx, eax

.nsp1:4AD5C1C8 add [edi+ebx], cx _62i_1:0040D365 add [edi+ebx], cx

.nsp1:4AD5C1CC jmp short loc_4AD5C1C1 _62i_1:0040D369 jmp short loc_40D35E

.nsp1:4AD5C1CE ; --- _62i_1:0040D36B ; ---

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

.nsp1:4AD5C1CE _62i_1:0040D36B

.nsp1:4AD5C1CE loc_4AD5C1CE: ;
CODE XREF: start+149j

_62i_1:0040D36B loc_40D36B: ; CODE
XREF: start+149j

.nsp1:4AD5C1CE ; ...start+154j _62i_1:0040D36B ; start+154j ...

.nsp1:4AD5C1CE lea esi, [ebp-20Eh] _62i_1:0040D36B lea esi, [ebp-18Bh]

.nsp1:4AD5C1D4 mov edx, [esi] _62i_1:0040D371 mov edx, [esi]

.nsp1:4AD5C1D6 lea esi, [ebp-1B2h] _62i_1:0040D373 lea esi, [ebp-12Fh]

.nsp1:4AD5C1DC mov al, [esi] _62i_1:0040D379 mov al, [esi]

.nsp1:4AD5C1DE cmp al, 1 _62i_1:0040D37B cmp al, 1

.nsp1:4AD5C1E0 jnz short loc_4AD5C221 _62i_1:0040D37D jnz short loc_40D3BE

.nsp1:4AD5C1E2 add edx, [esi+4] _62i_1:0040D37F add edx, [esi+4]

.nsp1:4AD5C1E5 push esi _62i_1:0040D382 push esi

.nsp1:4AD5C1E6 push edx _62i_1:0040D383 push edx

.nsp1:4AD5C1E7 push esi _62i_1:0040D384 push esi

.nsp1:4AD5C1E8 push 4 _62i_1:0040D385 push 4

.nsp1:4AD5C1EA push 100h _62i_1:0040D387 push 100h

.nsp1:4AD5C1EF push edx _62i_1:0040D38C push edx

.nsp1:4AD5C1F0 call dword ptr [ebp-16Ah] _62i_1:0040D38D call dword ptr [ebp-0F7h]

.nsp1:4AD5C1F6 pop edi _62i_1:0040D393 pop edi

.nsp1:4AD5C1F7 pop esi _62i_1:0040D394 pop esi

.nsp1:4AD5C1F8 cmp eax, 1 _62i_1:0040D395 cmp eax, 1

.nsp1:4AD5C1FB jnz loc_4AD5C3BE _62i_1:0040D398 jnz loc_40D55B

.nsp1:4AD5C201 add esi, 8 _62i_1:0040D39E add esi, 8

.nsp1:4AD5C204 mov ecx, 8 _62i_1:0040D3A1 mov ecx, 8

.nsp1:4AD5C209 rep movsb _62i_1:0040D3A6 rep movsb

.nsp1:4AD5C20B sub esi, 0Ch _62i_1:0040D3A8 sub esi, 0Ch

.nsp1:4AD5C20E sub edi, 8 _62i_1:0040D3AB sub edi, 8

.nsp1:4AD5C211 push esi _62i_1:0040D3AE push esi

.nsp1:4AD5C212 push dword ptr [esi-4] _62i_1:0040D3AF push dword ptr [esi-4]

.nsp1:4AD5C215 push 100h _62i_1:0040D3B2 push 100h

.nsp1:4AD5C21A push edi _62i_1:0040D3B7 push edi

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

�

.nsp1:4AD5C21B call dword ptr [ebp-16Ah] _62i_1:0040D3B8 call dword ptr [ebp-0F7h]

.nsp1:4AD5C221 _62i_1:0040D3BE

.nsp1:4AD5C221 loc_4AD5C221: ; CODE
XREF: start+1E2j

_62i_1:0040D3BE loc_40D3BE: ; CODE
XREF: start+1E2j

.nsp1:4AD5C221 push ebp _62i_1:0040D3BE push ebp

.nsp1:4AD5C222 pop ebx _62i_1:0040D3BF pop ebx

.nsp1:4AD5C223 sub ebx, 15h _62i_1:0040D3C0 sub ebx, 21h

.nsp1:4AD5C229 xor ecx, ecx _62i_1:0040D3C6 xor ecx, ecx

.nsp1:4AD5C22B mov cl, [ebx] _62i_1:0040D3C8 mov cl, [ebx]

.nsp1:4AD5C22D cmp cl, 0 _62i_1:0040D3CA cmp cl, 0

.nsp1:4AD5C230 jz short loc_4AD5C25A _62i_1:0040D3CD jz short loc_40D3F7

.nsp1:4AD5C232 inc ebx _62i_1:0040D3CF inc ebx

.nsp1:4AD5C233 lea esi, [ebp-20Eh] _62i_1:0040D3D0 lea esi, [ebp-18Bh]

.nsp1:4AD5C239 mov edx, [esi] _62i_1:0040D3D6 mov edx, [esi]

.nsp1:4AD5C23B _62i_1:0040D3D8

.nsp1:4AD5C23B loc_4AD5C23B: ;
CODE XREF: start+25Aj

_62i_1:0040D3D8 loc_40D3D8: ; CODE
XREF: start+25Aj

.nsp1:4AD5C23B push esi _62i_1:0040D3D8 push esi

.nsp1:4AD5C23C push ecx _62i_1:0040D3D9 push ecx

.nsp1:4AD5C23D push ebx _62i_1:0040D3DA push ebx

.nsp1:4AD5C23E push edx _62i_1:0040D3DB push edx

.nsp1:4AD5C23F push esi _62i_1:0040D3DC push esi

.nsp1:4AD5C240 push dword ptr [ebx] _62i_1:0040D3DD push dword ptr [ebx]

.nsp1:4AD5C242 push dword ptr [ebx+4] _62i_1:0040D3DF push dword ptr [ebx+4]

.nsp1:4AD5C245 mov eax, [ebx+8] _62i_1:0040D3E2 mov eax, [ebx+8]

.nsp1:4AD5C248 add eax, edx _62i_1:0040D3E5 add eax, edx

.nsp1:4AD5C24A push eax _62i_1:0040D3E7 push eax

.nsp1:4AD5C24B call dword ptr [ebp-16Ah] _62i_1:0040D3E8 call dword ptr [ebp-0F7h]

.nsp1:4AD5C251 pop edx _62i_1:0040D3EE pop edx

.nsp1:4AD5C252 pop ebx _62i_1:0040D3EF pop ebx

.nsp1:4AD5C253 pop ecx _62i_1:0040D3F0 pop ecx

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

�

.nsp1:4AD5C254 pop esi _62i_1:0040D3F1 pop esi

.nsp1:4AD5C255 add ebx, 0Ch _62i_1:0040D3F2 add ebx, 0Ch

.nsp1:4AD5C258 loop loc_4AD5C23B _62i_1:0040D3F5 loop loc_40D3D8

.nsp1:4AD5C25A _62i_1:0040D3F7

.nsp1:4AD5C25A loc_4AD5C25A: ;
CODE XREF: start+14j

_62i_1:0040D3F7 loc_40D3F7: ; CODE
XREF: start+14j

.nsp1:4AD5C25A ; start+232j _62i_1:0040D3F7 ; start+232j

.nsp1:4AD5C25A mov eax, 0 _62i_1:0040D3F7 mov eax, 0

.nsp1:4AD5C25F cmp eax, 0 _62i_1:0040D3FC cmp eax, 0

.nsp1:4AD5C262 jz short loc_4AD5C26E _62i_1:0040D3FF jz short loc_40D40B

.nsp1:4AD5C264 popa _62i_1:0040D401 popa

.nsp1:4AD5C265 popf _62i_1:0040D402 popf

.nsp1:4AD5C266 mov eax, 1 _62i_1:0040D403 mov eax, 1

.nsp1:4AD5C26B retn 0Ch _62i_1:0040D408 retn 0Ch

.nsp1:4AD5C26E ; --- _62i_1:0040D40B ; ---

.nsp1:4AD5C26E _62i_1:0040D40B

.nsp1:4AD5C26E loc_4AD5C26E: ;
CODE XREF: start+264j

_62i_1:0040D40B loc_40D40B: ; CODE
XREF: start+264j

.nsp1:4AD5C26E popa _62i_1:0040D40B popa

.nsp1:4AD5C26F popf _62i_1:0040D40C popf

.nsp1:4AD5C270 jmp near ptr 4AD09797h _62i_1:0040D40D jmp near ptr dword_4012A8

.nsp1:4AD5C270 start endp _62i_1:0040D40D start endp

.nsp1:4AD5C270 _62i_1:0040D40D

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

�

11. Appendix – Olly Scipt
The following samples are Olly-script that can be used to unpack the NsPack

version 3.7 packer.

/*

; ---
;
; NsPack 3.7 unpacking script for Olly
;
; Date : 22/07/2009
;
; ---
;

*/

var cpa
var errorcnt
_tryAgain:
find eip, #619DE9????????#
cmp $RESULT,0
je _tryNSPack
mov cpa,$RESULT
add cpa,2
bp cpa
run
bc cpa
sto
cmt eip, "This is the OEP (original entry point). Use this to fix the IAT"
an eip
ret
_tryNSPack:
cmp errorcnt,1
je _notNSPack
mov errorcnt,1
sto
JMP _tryAgain
_notNSPack:
msg "*** This executable does not look to be packed using NsPack***"
ret

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

�

11.1. Olly Scipt OEP locator
The following samples are olly-script that can be used to unpack the NsPack

version 3.4 packer.

/*

; ---
;
; NsPack 3.4 OEP finder script for Olly
;
; Date : 10/08/2009
;
; ---
;

*/

var t
sti
sti
mov t,esp
bphws t,"r"
run
bphwc t
sti
sti
cmt eip, "This is the OEP (original entry point). "
msg "Dump & use this to fix the IAT!"
ret

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

�

12. More Appendixes...
The following provide unpacking code samples for use in analyzing NsPack.

12.1. The Unpack Code
The following is the code used to unpack the embedded executable file:

/* loop to unpack the code from the compressed data*/

/*
read_struct(self, struct)
read_struct(struct) --> Read structure from file into memory.

This loads the file into memory from
disk without executing it.

'*in_table' is a pointer referencing the position in the data

ssize is the 32 bit value at the point of the data we have read into the function.

*/

 while (true) {
 uint32_t former_size = initial_byte & amount_unpacked_to_date;
 uint32_t table_position;
 uint32_t temp_value = point_in_table1;

 if (read_struct.error) return 1;
/* check once per mainloop - if there is an error, end */

 if (!load_single_bit_from_table(&table[(point_in_table1<<4) + former_size],
&read_struct)) {

 uint32_t shft = 8 - (table_rem&0xff);
 shft &= 0xff;
 table_position = (point_in_table2>>shft) +
((put&amount_unpacked_to_date)<<(table_rem&0xff));
 table_position *=3;
 table_position<<=8;

 point_in_table2 = last_bit = 1;

 if (load_single_bit_from_table(&table[point_in_table1+0xc0], &read_struct)) {
if (!load_single_bit_from_table(&table[point_in_table1+0xcc], &read_struct)) {
 table_position = point_in_table1+0xf;
 table_position <<=4;
 table_position += former_size;
 if (!load_single_bit_from_table(&table[table_position], &read_struct)) {
 if (!amount_unpacked_to_date) return point_in_table2;

 point_in_table1 = 2*((int32_t)point_in_table1>=7)+9;
 if (!buffer_bounded(destination_point, dsize,

&destination_point[amount_unpacked_to_date - last_bytes[0]], 1)) return 1;
 point_in_table2 = (uint8_t)destination_point[amount_unpacked_to_date -

last_bytes[0]];

 destination_point[amount_unpacked_to_date] = point_in_table2;
 amount_unpacked_to_date++;
 if (amount_unpacked_to_date>=dsize) return 0;
 continue;

 } else {
 former_size = load_a_variable_number_of_bits_from_table(&table[0x534],

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

�	

&read_struct, former_size);
 point_in_table1 = ((int32_t)point_in_table1>=7);
 point_in_table1 = ((point_in_table1-1) & 0xfffffffd)+0xb;
 }
} else {
 if (!load_single_bit_from_table(&table[point_in_table1+0xd8], &read_struct)) {
 table_position = last_bytes[1];
 } else {
 if (!load_single_bit_from_table(&table[point_in_table1+0xe4], &read_struct)) {
 table_position = last_bytes[2];
 } else {

 table_position = last_bytes[3];
 last_bytes[3] = last_bytes[2];
 }

 last_bytes[2] = last_bytes[1];
 }

 last_bytes[1] = last_bytes[0];
 last_bytes[0] = table_position;

 former_size = load_a_variable_number_of_bits_from_table(&table[0x534],
&read_struct, former_size);

 point_in_table1 = ((int32_t)point_in_table1>=7);
 point_in_table1 = ((point_in_table1-1) & 0xfffffffd)+0xb;
}

 } else {
last_bytes[3] = last_bytes[2];
last_bytes[2] = last_bytes[1];
last_bytes[1] = last_bytes[0];

point_in_table1 = ((int32_t)point_in_table1>=7);
point_in_table1 = ((point_in_table1-1) & 0xfffffffd)+0xa;

former_size = load_a_variable_number_of_bits_from_table(&table[0x332],
&read_struct, former_size);

table_position = ((int32_t)former_size>=4)?3:former_size;
table_position<<=6;
table_position = load_n_bits_from_table(&table[0x1b0+table_position], 6,

&read_struct);

if (table_position>=4) {

 uint32_t s = table_position;
 s>>=1;
 s--;

 temp_value = (table_position & point_in_table2) | 2;
 temp_value<<=(s&0xff);

 if ((int32_t)table_position<0xe) {
 temp_value += load_bitmap(&table[(temp_value-table_position)+0x2af], s,

&read_struct);
 } else {
 s += 0xfffffffc;
 table_position = get_bitmap(&read_struct, s);
 table_position <<=4;
 temp_value += table_position;
 temp_value += load_bitmap(&table[0x322], 4, &read_struct);
 }
} else {

 last_bytes[0] = temp_value = table_position;
}

last_bytes[0] = temp_value+1;

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

�

 }

/* nspack_unpacking_function_end */

 if (last_bytes[0] > amount_unpacked_to_date) return point_in_table2;

 former_size +=2;

 if (!buffer_bounded(destination_point, dsize,
&destination_point[amount_unpacked_to_date], former_size) ||

 !buffer_bounded(destination_point, dsize,
&destination_point[amount_unpacked_to_date - last_bytes[0]], former_size)

) {
return 1;

 }
 do {

destination_point[amount_unpacked_to_date] =
destination_point[amount_unpacked_to_date - last_bytes[0]];

amount_unpacked_to_date++;
 } while (--former_size && amount_unpacked_to_date<dsize);
 point_in_table2 = (uint8_t)destination_point[amount_unpacked_to_date - 1];

 if (amount_unpacked_to_date>=dsize) return 0;
 }
 }
}

This function is described in detail below.

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

��

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

��

12.1.1. Functions used in packing routines

The following are functions/routines used in the following sections:

readInt_32
int32_t readInt_32 (const char *buff)
{
int32_t value;
/* Ensure that data is in correct 'Endian' Format */

/* Case 1 – Big Endian */
/* If the data is Big Endian – set the value this way */
CASE 1 (BE)
 value = *(int32_t *) buff;
/* case 1 is not likely to apply in NsPack, */
/* but we should check to be sure */

/* Case 2 – Little Endian */
/* If the data is Big Endian – set the value this way */
CASE 2 – LE (expected)
 value = buff[0] & 0xff;
 value |= (buff[1] & 0xff) << 8;
 value |= (buff[2] & 0xff) << 16;
 value |= (buff[3] & 0xff) << 24;

/* We are processing the data as 'Big Endian' */
/* So we want to reverse the format that we expect */
/* As the buffer is read into the system */

/* Pass the returned function value back to the system */
 return value;
}

/* This function reads the data – a 32bit word and returns */
/* it to the system in Big Endian format*/
/* for the standard data stream in an Intel Little Endian */ /* system, we will reverse
the order of the data for */
/* processing */

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

�

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

��

cli_context

Based on the libGDS library

See: http://libgds.info.ucl.ac.be/

http://libgds.info.ucl.ac.be/doc/html/cli__ctx_8c-source.html

Structure – DeNSP

The following structure used in this document relates to the results of the 'read_struct'
function.

struct DeNSP read_struct;

/* This is defined in full as... */
struct DeNSP {

char *src_point_curr;
char *src_point_end;
uint32_t bitmap;
uint32_t old_value;
int error;

 /* the following values are not in the original structure /*
/*and are included later in the function */
uint32_t tablesz;
char *table;

};

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

��

buffer_bounded

This function ensures that the second buffer is contained within the first (i.e. buffer2 is
contained inside buffer1).

buffer_bounded(buffer1, buffer1_size, buffer2, buffer2_size);

/*
This function is a check routine to ensure that a buffer does not cause an overrun.
If data is returned that exceeds the initial buffer being processed, the function will
exit instead of writing past the end of the first buffer.
*/

 (buffer1_size > 0 && \
buffer2_size > 0 && \
buffer2_size <= buffer1_size && \
buffer2 >= buffer1 && \
buffer2 + buffer2_size <= buffer1 + buffer1_size && \
buffer2 + buffer2_size > buffer1);

/*The function checks the 2 buffers, buffer1 and buffer2 with respective size (length):
buffer1 buffer1_size
buffer2 buffer2_size

This is done to ensure that buffer (when an additional amount of data is added) is
larger or equal in length to the buffer it is being compared to (or that one buffer does
not exceed the other buffer that is being written over).

The function returns 'TRUE' logically if all of the following conditions are met:
buffer1 has a size of > 0
buffer2 has a size of > 0

All values of the function have to be logically 'TRUE' for the function to return a value
of 'TRUE'.

Basically a bounds check to stop security and other errors.
*/

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

��

load_bitmap

Load the data as a bitmapped variable.

uint32_t load_bitmap(struct DeNSP *read_struct, uint32_t bits) {

 uint32_t retv = 0;

/*
read_struct(self, struct)
read_struct(struct) --> Read structure from file into memory.

This loads the file into memory from
disk without executing it.

retv is a 32bit variable used as a marker and is initially set = 0.

bits is the 32 bit value at the point of the data we have read into the function.

*/

if ((int32_t)bits <= 0)
return 0;
/* This variable is signed */
/* As such we want to validate that we have not rolled */
/* to a negative value */

while (bits--) {
/* We loop a number of times that is defined by the */
/* 32-bit variable 'bits' that is loaded into the */
/* function at start */

read_struct -> bitmap >>= 1;
/* Remember this is an unsigned value */
/* we start by reading the value at position */
/* 'bitmap' x 2 (right shifted 1) */

 retv <<= 1;
/* Set the value 'retv' x2 or */
/* retv = retv * 2 */

 if (read_struct -> old_value >= read_struct -> bitmap) {
/* Note: this value is unsigned */
/* We want to compare the value of */
/* 'read_struct' at the [old_value] to the value of */
/* 'read_struct' at the entry [bitmap] */
/* In the event that the entry at [old_value] is >= to */
/* the value at [bitmap] we assign the value as follows */

read_struct -> old_value -= read_struct -> bitmap;
/* Set [old_value] = [old_value] – [bitmap] */

retv |= 1;
/* Set 'retv' using a Bitwise-inclusive-OR assignment */
/* retv = retv OR '0001' */
}

 if (read_struct -> bitmap < 0x1000000) {
/* Next, test if the value at [bitmap] is > 0x1000000 */

read_struct-> bitmap <<= 8;
/* if the value is > 0x1000000, we want to left shift it */
/* or [bitmap] = [bitmap] * 256 */

 read_struct -> old_value = (read_struct -> old_value << 8) |

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

��

load_byte(read_struct);
/* The reset the value at [old_value] */
/* Use an OR operation */
/* [old_value] x 256 OR the function value */
/* from running load_byte at the current value of */
/* read_struct */

}
}
return retv;

/* Output the new value of retv */
}
return 0;

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

��

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

�	

next_bit

uint32_t next_bit (uint16_t *intable, uint32_t back, struct DeNSP *read_struct)
{

/*
read_struct(self, struct)
read_struct(struct) --> Read structure from file into memory.

This loads the file into memory from
disk without executing it.

'*in_table' is a pointer referencing the position in the data

ssize is the 32 bit value at the point of the data we have read into the function.

*/

/* start counting from 1 – we want to read in 0x100 bits */
/* FF or 256 decimal*/

uint32_t pos = 1;
uint32_t next_bit = 0;
uint32_t i;

if ((int32_t)back<=0)

/* This variable is signed */
/* As such we want to validate that we have not rolled */
/* to a negative value */
return 0;

for (i=0; i< back; i++) {
/* Loop from 0 until i< back incrementing i = i+1 */

uint32_t bit = load_single_bit_from_table (&intable[pos],
read_struct);

/* Set the value 'bit' to the returned value of the */
/* function */

pos=(pos*2) + bit;
/* set pos = pos x2 + the value we just calculated*/

next_bit |= (bit << i);
/* Set next_bit = next_bit bitwise OR’d with the returned */
/* value of bit that has been right shited ‘i’ times */
/* each time we loop, the right sift increases */

}

return next_bit;
/* Output the new value 'next_bit' */

}

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

�

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

��

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

��

load_byte

uint32_t load_byte(struct DeNSP *read_struct) {
/*
read_struct(self, struct)
read_struct(struct) --> Read structure from file into memory.

This loads the file into memory from
disk without executing it.

*/

/* This function reads and updates 32bit values jumping the
Pointer to the next value in the table */

uint32_t ret;

if (read_struct -> src_point_curr >= read_struct-> src_point_end) {
/* If the value at [src_point_curr] is >= that at */
/* [src_point_end] we set an error and end */

read_struct->error = 1;
return 0xff;

}

ret = *(read_struct->src_point_curr);
/* set the pointer value ret to [src_point_curr] */

read_struct -> src_point_curr++;
/* read the value at the next point */
/* src_point_curr = src_point_curr + 1 */

return ret&0xff;
/* return ret after we have */
/* cleared the values of ret other than the last 256 bits */

}

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

�

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

��

load_single_bit_from_table

int load_single_bit_from_table(uint16_t *in_table, struct DeNSP *read_struct) {

/*
read_struct(self, struct)
read_struct(struct) --> Read structure from file into memory.

This loads the file into memory from
disk without executing it.

'*in_table' is a pointer referencing the position in the data

ssize is the 32 bit value at the point of the data we have read into the function.

*/

/*
There are 2 real parts to this function. Basically, the function reads, swaps and
processes values using marker variables and pointers. As the values are unsigned, the
function also has a check routine (security, function etc).

*/

uint32_t nval;

if (!buffer_bounded((char *)read_struct->table, read_struct->table_size, (char
*)in_table, sizeof(uint16_t)))
{

read_struct->error = 1;
return 0xff;

/* This is a simple bounds check to ensure safety */
/* the real function follows */
}

/* 'nval' is calculated using the multiplication of the pointer */
/* and the left shifted value read at [bitmap] */
/* The value at [bitmap] is divided by 2048 */
nval = *in_table * (read_struct->bitmap>>0xb);

if (read_struct->old_value<nval)
/* If the value at [] is < the value just calculated 'nval' */
/* do the following ...*/
{
/* NOTE: the value is unsigned */

uint32_t sval;
read_struct->bitmap = nval;
/* Start by setting the value [bitmap] to nval */
nval = *in_table;
/* set nval to the value stored at the pointer */
sval = 0x800 - nval;
/* Set sval = 2048 - nval */
/* The process it */
sval = ((int32_t)sval)>>5; /* This value is signed */
sval += nval;

/* Set a new value for the pointer */
*in_table=sval;

/* More tests – safety measures */
if (read_struct->bitmap<0x1000000) {
/* This value is unsigned */

read_struct->old_value = (read_struct->old_value<<8) |
load_byte(read_struct);

read_struct->bitmap<<=8;
 }

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

��

return 0;
}

/* Set [bitmap] = [bitmap] –nval */
read_struct->bitmap -= nval;

/* Set [old_value] = [old_value] – nval */
read_struct->old_value -= nval;

/* Update nval based on the pointer*/
nval = *in_table;

/* Left sift nval, or (nval = nval – nval/32) */
/* OR... nval = 31 x nval/32 */
nval -= (nval>>5);
/* NOTE: variable is word, unsigned, we will do more checks */

*in_table=nval;

if (read_struct->bitmap<0x1000000)
{
/* More security checks as the value is unsigned */

read_struct->old_value = (read_struct->old_value<<8) |
load_byte(read_struct);

read_struct->bitmap<<=8;
}

return 1;

}

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

��

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

��

load_100_bits_from_table

This function loads 0x100 (or 256) bits from the table.

uint32_t load_100_bits_from_table(uint16_t *in_table, struct DeNSP *read_struct,
uint32_t ssize) {

/*
read_struct(self, struct)
read_struct(struct) --> Read structure from file into memory.

This loads the file into memory from
disk without executing it.

'*in_table' is a pointer referencing the position in the data

ssize is the 32 bit value at the point of the data we have read into the function.

*/

/* start counting from 1 – we want to read in 0x100 bits */
/* FF or 256 decimal*/

uint32_t count = 1;

/* Run once before looping*/

uint32_t left_position, table_position;

/* define marker variables (left_position and table_position) */
/* These are used to read information while shifting information */

/* Clear the last 256 bit value of ssize */
 left_position = ssize&0xff;

/* Clear the values of ssize other than the last 256 bits */
/* Bitwise 'OR' the value ssize with the left_position */
/* variable that has been AND’d with 0xff in order to */
/* clear the right most 256 bits. */
/* this is: */
/* Binary mask the right most 256 bits (leave left most ok) */
/* Right shift 1 – that is double left_position */
/* Bitwise 'OR' the values*/

 ssize=(ssize & 0xffffff00)|((left_position<<1)&0xff);

/* Right shift the value 'left_position' seven times*/
/* or left_position = left_position / 128*/

 left_position>>=7;

/* Set the variable 'table_position' as equalling the value */
/* 'left_position' plus 1 */

 table_position = left_position+1;

/* Left shift the variable eight times */
/* table_position = Table_position x 256 */

 table_position<<=8;

/* Set 'table_position += count' */
/* Add Table position and the value at count*/
/* Set the new value of table_position to this value */

 table_position = table_position + count;

/* Load a new value from the file as it was read into memory */
/* and stored in an array */

table_position = load_single_bit_from_table (&in_table[table_position], read_struct);

/* Set the new value of count as equal to double the previous */

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

��

/* value 'OR'd with the new value just loaded */
count=(count*2)|table_position;

/* Check if the variable 'left_position' is not equal to */
/* 'table_position'. If true, loop, otherwise end. */
/* The loop runs until these 2 values are equal */
if (left_position!=table_position) {

/* The next loop occurs in a different way to the first */
/* This loop has to run until the value 'count' is less */
/* than 256 or 0x100*/

while (count<0x100)

/* Process the new value of count and load the values from */
/* the array that is associated with the value of the file */
/* as read into memory and stored in the array */

 count = (count*2)|load_single_bit_from_table(&in_table[count],
read_struct);
 }
 }

/* Reset the variable count */
/* Adding 255 to the value of count effectively sets */
/* the returned value back to 0 */
return count&0xff;

}

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

	

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

load_n_bits_number_of_bits_from_table

This function allows a variable number of bits (n) to be loaded from the table.

uint32_t load_n_bits_from_table(uint16_t *intable, uint32_t n_bits, struct UNSP
*read_struct) {

/*
read_struct(self, struct)
read_struct(struct) --> Read structure from file into memory.

This loads the file into memory from
disk without executing it.

'*in_table' is a pointer referencing the position in the data

'n_bits' is the 32 bit value that determines how many loops this function makes.
*/

/* start counting from 1 – we want to read in 'n_bits' # of bits */

uint32_t count = 1;

uint32_t bitcounter;

/* if (n_bits) { always set! */

bitcounter = n_bits;
/* Set the value of the counter to the initial value */

while (bitcounter--)
/* bitcounter = bitcounter -1*/
/* Count down from bitcounter = 'n_bits' to zero */
/* at each loop, update the array of bitmaps */
/* reading the 32 bit values as we go */

count = count*2 + load_single_bit_from_table (&intable[count], read_struct);
/* close the function and return} */

return count - (1 <<(n_bits & 0xff));

/* The value returned is count – a right sifted value */
/* The right sift takes the value 1 and right sifts it */
/* based on the initial value 'n_bits' selected with */
/* an 'AND' operation to clear the values of 'n_bits' other */
/* then the last 256 bits */

}

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

�

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

�

load_a_variable_number_of_bits_from_table

This function allows a variable number of bits (n) to be loaded from the table.

uint32_t load_a_variable_number_of_bits_from_table(uint16_t *in_table, struct DeNSP
*read_struct, uint32_t former_size) {

/*
read_struct(self, struct)
read_struct(struct) --> Read structure from file into memory.

This loads the file into memory from
disk without executing it.

'*in_table' is a pointer referencing the position in the data

former_size is the 32 bit value at the point of the data we have read into the function.

*/

/* Test 1 – Test the negated function and return if True (or !False) */
 if (!load_single_bit_from_table(in_table, read_struct))

/* We start by loading the value into the function, */
/* ' load_single_bit_from_table()' – as defined above. */
/* as a test. If the function */

 return load_a_variable_number_of_bits_from_table (&in_table[(former_size<<3)+2], 3,
read_struct);

/* Start by testing function values */
/* when these are valid, we continue – otherwise the */
/* function returns by running another function*/

/* Test 2 – Test the negated function and return if True (or !False) */
 if (!load_single_bit_from_table(&in_table[1], read_struct))

/* Each of the tests is a negative */
/* that is ! function*/

 return 8 + load_a_variable_number_of_bits_from_table
(&in_table[(former_size<<3)+0x82], 3, read_struct);
/* The return routing drops the result */
/* without running the next function */

/* Tests did not return – calculate and return a value */
 return 0x10 + load_a_variable_number_of_bits_from_table (&in_table[0x102], 8,
read_struct);

/* If all else fails (that is the first two tests */
/* we return another value */

}

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

�

check_malloc

void *check_malloc(size_t size)
{

void *alloc;

/* set a max allocation size – Max_Alloc */
/* Assumed this is done in an existing function */
/* This is a catch to ensure that memory is not exhausted */

 if(!size || size > Max_Alloc) {
size_tma

/* error message – debug info here*/

return NULL;
 }

 alloc = malloc(size);

 if(!alloc) {

/* error message – debug info here*/
/* If the function cannot allocate sufficient memory or if the buffer */
/* will cause an overflow, return an error and exit gracefully */

return NULL;
 } else return alloc;

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

�

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

�

The Determination and call to the Unpacking Function

We define some of the values used in unpacking in the scanning of NsPack in the first
instance.

Here we find the values in the file that we use in the unpacking sections (below).
/* NsPack scanning routine*/

/* We need the following valiables */

uint32_t eprva = vep;
uint32_t start_of_stuff, ssize, dsize, rep = ep;
unsigned int nowinldr;
char nbuff[24];
char *src_point=epbuff, *destination_point;

if (*epbuff=='\xe9') { // Run this check as it is likely the
// headers have been altered by
// NsPack

eprva = Read_PE(epbuff+1)+vep+5;
/* Read the value from the File PE */

src_point = START; // Set
}

/* Next check for the signature itself */
if (memcmp(src_point, "\x9c\x60\xe8\x00\x00\x00\x00\x5d\xb8\x07\x00\x00\x00", 13)) break;

nowinldr = 0x54-READ_PE(src_point+17);

// If NsPack: Set *start_of_stuff;

/* Set the initial values for : */
ssize = READ_Value(src_point+5)|0xff;
dsize = READ_Value(src_point+9);

// do this by reading the values as above

/* To find the OEP */
/* This is a small check to find the OEP for files that are packed with NsPack */

// Set by reading a 32 bit value from the data point
eprva=eprva+5+READ_Value(START+1);

// return;
// Message NsPack-OEP = %08x\n, eprva;

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

�

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

�

The Unpacking Function itself (nspack_unpacking_function)

uint32_t nspack_unpacking_function(uint16_t *table, uint32_t table_size, uint32_t
table_rem, uint32_t allocsize, uint32_t initial_byte, char *src_point, uint32_t ssize, char
*destination_point, uint32_t dsize) {

/* Read in the data */
/*
read_struct(self, struct)
read_struct(struct) --> Read structure from file into memory.

This loads the file into memory from
disk without executing it.

'*in_table' is a pointer referencing the position in the data

ssize is the 32 bit value at the point of the data we have read into the function.

*/

struct DeNSP read_struct;

/* Start by setting 'i'. This is a */
/* Clear the values of (allocsize+table_rem)other than the last 256 bits */
/* We multiply 768 by the last values (0-255) calculated and add 1846*/
uint32_t i = (0x300<<((allocsize+table_rem)&0xff)) + 0x736;

/* Initialise the variables – we start with nothing unpacked. */
/* We are doing a shift operation */
/* These are used to hold the prior values of the data as we conduct */
/* swaps */
uint32_t last_bit = 0;
uint32_t amount_unpacked_to_date = 0;

// These values have been changes from that which is included in a comment
// below. The array is used for bitshift operations and other bitwise
// calculations.

uint32_t last_bytes[4]; // We use a 4 element array of 32 bit values
// to manipulate the data section that we
// read from the uncompressed file.

/* The array is initialised with an initial value of 0x0001 */
for (i=0; i<4; ++i) last_bytes[i] = 1;

/*
uint32_t former_bytes_value = 1; // last_bytes[0];
uint32_t former_former_bytes_value = 1; // last_bytes[1];
uint32_t former_former_former_bytes_value = 1; // last_bytes[2];
uint32_t former_former_former_former_bytes_value = 1; // last_bytes[3];
*/

/* Initialise the variables – and the point is at the start of the data. */
uint32_t point_in_table1 = 0;
uint32_t point_in_table2 = 0;

/* */
uint32_t put = (1<<(allocsize&0xff))-1;

/* Set the initial start value as 0x01 left shifted */
/* This value is calculated outside of this function and is given as */
/* input */
initial_byte = (1<<(initial_byte&0xff))-1;

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

�	

/* We need to check that we do not exceed the bounds */
if (table_size < i*sizeof(uint16_t)) return 2;

/* initialise the table and prep it */
/* this is the array of memory to process the decompression */
while (i) table[--i]=0x400;

read_struct.error = 0;
read_struct.old_value = 0;
read_struct.src_point_curr = src_point;
read_struct.bitmap = 0xffffffff;
read_struct.src_point_end = src_point + ssize;
read_struct.table = (char *)table;
read_struct.table_size = table_size;

/* */
for (i = 0; i<5 ; i++) read_struct.old_value = (read_struct.old_value<<8) |
get_byte(&read_struct);

if (read_struct.error) return 1;
/* if (!dsize) return 0; - check to ensure valid*/
/* Check for exceptions etc. */

/* loop to unpack the code from the compressed data*/
while (1) {
 uint32_t former_size = initial_byte & amount_unpacked_to_date;
 uint32_t table_position;
 uint32_t temp_value = point_in_table1;

 if (read_struct.error) return 1;
/* We need to check once per mainloop for errors and exceptions */
/* Not a part of the decompression itself, but still needed */

 if (!load_single_bit_from_table(&table[(point_in_table1<<4) + former_size],
&read_struct)) {
 /* Check that jumps to one function if true or processes differently */
 /* if not found */

 // We start with setting a shift variable used in the process
 uint32_t shft = 8 - (table_rem&0xff);
 shft &= 0xff; // We only want the last bits

 /* These values are used to Right Shift values */
 /* these operations change the 32 bit value 'table_position' that
 /* is used to store values in the data
 table_position = (point_in_table2>>shft) +
((put&amount_unpacked_to_date)<<(table_rem&0xff));
 table_position *=3;
 table_position<<=8;

 /* Next, remember that these values (below) are signed */
 if ((int32_t)point_in_table1>=4)
 { // signed
 if ((int32_t)point_in_table1>=0xa)

{ // signed
 point_in_table1 -= 6;
} else {
 point_in_table1 -= 3;
}

 }
 //Here is the alternate run if the first test value if found
 else
 {
 point_in_table1=0;
 }

 if (last_bit) {
if (!buffer_bounded(destination_point, dsize,

&destination_point[amount_unpacked_to_date - last_bytes[0]], 1)) return 1;
ssize = (ssize&0xffffff00) | (uint8_t)destination_point[amount_unpacked_to_date -

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

�

last_bytes[0]];
point_in_table2 = load_100_bits_from_tablesize(&table[table_position+0x73],

&read_struct, ssize);
last_bit=0;

 } else {
point_in_table2 = load_100_bits_from_tablesize(&table[table_position+0x736],

&read_struct);
 }

/* At this point we unpack a single byte of data */
/* this is repeated many times */
/* We start by doing some bounds checks */
 if (!buffer_bounded(destination_point, dsize, &
destination_point[amount_unpacked_to_date], 1))

return 1;
 destination_point[amount_unpacked_to_date] = point_in_table2;
 amount_unpacked_to_date++;
/* Check bounds */
 if (amount_unpacked_to_date>=dsize) return 0;
 continue;

 } else {

 point_in_table2 = last_bit = 1;

 if (load_single_bit_from_table(&table[point_in_table1+0xc0], &read_struct)) {
if (!load_single_bit_from_table(&table[point_in_table1+0xcc], &read_struct)) {
 table_position = point_in_table1+0xf;
 table_position <<=4;
 table_position += former_size;
 if (!load_single_bit_from_table(&table[table_position], &read_struct)) {
 if (!amount_unpacked_to_date) return point_in_table2;

 point_in_table1 = 2*((int32_t)point_in_table1>=7)+9; /* Note: we are using a
signed value */

 if (!buffer_bounded(destination_point, dsize,
&destination_point[amount_unpacked_to_date - last_bytes[0]], 1)) return 1;

 point_in_table2 = (uint8_t)destination_point[amount_unpacked_to_date -
last_bytes[0]];

 /* unpack_one_byte - real */
 destination_point[amount_unpacked_to_date] = point_in_table2;
 amount_unpacked_to_date++;
 if (amount_unpacked_to_date>=dsize) return 0;
 continue;

 } else {
 former_size = load_a_variable_number_of_bits_from_table(&table[0x534],

&read_struct, former_size);
 point_in_table1 = ((int32_t)point_in_table1>=7); /* signed */
 point_in_table1 = ((point_in_table1-1) & 0xfffffffd)+0xb;
 /* jmp checkloop_and_backcopy (uses edx) */
 } /* gotbit_uno ends */
} else { /* gotbit_due */
 if (!load_single_bit_from_table(&table[point_in_table1+0xd8], &read_struct)) {
 table_position = last_bytes[1];
 } else {
 if (!load_single_bit_from_table(&table[point_in_table1+0xe4], &read_struct)) {
 table_position = last_bytes[2];
 } else {

 table_position = last_bytes[3];
 last_bytes[3] = last_bytes[2];
 }

 last_bytes[2] = last_bytes[1];
 }

 last_bytes[1] = last_bytes[0];
 last_bytes[0] = table_position;

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

��

 former_size = load_a_variable_number_of_bits_from_table(&table[0x534],
&read_struct, former_size);

 point_in_table1 = ((int32_t)point_in_table1>=7);
/* Value used is signed */

 point_in_table1 = ((point_in_table1-1) & 0xfffffffd)+0xb;
 /* jmp checkloop_and_backcopy (uses edx) */
}

 } else {
/* Here we swap the stored values repeatedly */
/* The values in the table are cycled as we add new ones to process */

last_bytes[3] = last_bytes[2];
last_bytes[2] = last_bytes[1];
last_bytes[1] = last_bytes[0];

point_in_table1 = ((int32_t)point_in_table1>=7);
point_in_table1 = ((point_in_table1-1) & 0xfffffffd)+0xa;

former_size = load_a_variable_number_of_bits_from_table(&table[0x332],
&read_struct, former_size);

table_position = ((int32_t)former_size>=4)?3:former_size;
table_position<<=6;
table_position = load_n_bits_from_table(&table[0x1b0+table_position], 6,

&read_struct);

if (table_position>=4) {

 uint32_t s = table_position;
 s>>=1;
 s--;

 temp_value = (table_position & point_in_table2) | 2;
 temp_value<<=(s&0xff);

 if ((int32_t)table_position<0xe) {
 temp_value += load_bitmap(&table[(temp_value-table_position)+0x2af], s,

&read_struct);
 } else {
 s += 0xfffffffc;
 table_position = get_bitmap(&read_struct, s);
 table_position <<=4;
 temp_value += table_position;
 temp_value += load_bitmap(&table[0x322], 4, &read_struct);
 }
} else {
 /* gotbit_out1 */
 last_bytes[0] = temp_value = table_position;
}
/* gotbit_out2 */
last_bytes[0] = temp_value+1;
/* jmp checkloop_and_backcopy (makes use of EDX) */

 }

 /* checkloop_and_backcopy */
 if (!last_bytes[0]) return 0;

/* nspack_unpacking_function_end */

 if (last_bytes[0] > amount_unpacked_to_date) return point_in_table2;

 former_size +=2;

 if (!buffer_bounded(destination_point, dsize,
&destination_point[amount_unpacked_to_date], former_size) ||

 !buffer_bounded(destination_point, dsize,
&destination_point[amount_unpacked_to_date - last_bytes[0]], former_size)

) {
return 1;

�?.64�&�*?645A

GIAC GREM Gold: Packer Analysis Report – Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

��

 }

 do {
destination_point[amount_unpacked_to_date] =

destination_point[amount_unpacked_to_date - last_bytes[0]];
amount_unpacked_to_date++;

 } while (--former_size && amount_unpacked_to_date<dsize);
 point_in_table2 = (uint8_t) destination_point [amount_unpacked_to_date - 1];

 if (amount_unpacked_to_date>=dsize) return 0;

 }

 }
/* while true ends */
}

/*

Basically, the function does a series of reads and shift operations based on the previously
listed and detailed functions.

The diagram below is complex, but does demonstrate this flow.

*/

�?.64�&�*?645A

Last Updated: February 19th, 2013

Upcoming SANS Training
Click Here for a full list of all Upcoming SANS Events by Location

SANS Secure Singapore 2013 Singapore, SG Feb 25, 2013 - Mar 02, 2013 Live Event

SANS 2013 Orlando, FLUS Mar 08, 2013 - Mar 15, 2013 Live Event

SEC573 Python for Pen Testers Washington, DCUS Mar 18, 2013 - Mar 22, 2013 Live Event

SANS Secure Canberra 2013 Canberra, AU Mar 18, 2013 - Mar 23, 2013 Live Event

What Works in Cyber Threat Intelligence Summit Washington, DCUS Mar 22, 2013 - Mar 22, 2013 Live Event

SANS Monterey 2013 Monterey, CAUS Mar 22, 2013 - Mar 27, 2013 Live Event

SANS Abu Dhabi 2013 Abu Dhabi, AE Mar 23, 2013 - Mar 28, 2013 Live Event

SANS Delhi 2013 New Delhi, IN Apr 01, 2013 - Apr 12, 2013 Live Event

SANS Northern Virginia 2013 Reston, VAUS Apr 08, 2013 - Apr 13, 2013 Live Event

SANS Secure Europe 2013 Amsterdam, NL Apr 15, 2013 - Apr 27, 2013 Live Event

SANS Cyber Guardian 2013 Baltimore, MDUS Apr 15, 2013 - Apr 20, 2013 Live Event

Management 442- BETA Washington, DCUS Apr 19, 2013 - Apr 20, 2013 Live Event

AppSec 2013 Austin, TXUS Apr 22, 2013 - Apr 27, 2013 Live Event

SANS CyberCon 2013 Online, VAUS Apr 22, 2013 - Apr 27, 2013 Live Event

SANS CDK Seoul 2013 Seoul, KR Apr 22, 2013 - Apr 27, 2013 Live Event

Critical Security Controls International Summit London, GB Apr 26, 2013 - May 02, 2013 Live Event

SANS Secure India @Bangalore 2013 Bangalore, IN Apr 29, 2013 - May 04, 2013 Live Event

SANS Security West 2013 San Diego, CAUS May 07, 2013 - May 16, 2013 Live Event

SANS at IT Web Security Summit 2013 Johannesburg, ZA May 09, 2013 - May 10, 2013 Live Event

SANS South Africa May 2013 Johannesburg, ZA May 13, 2013 - May 25, 2013 Live Event

SANS Brisbane 2013 Brisbane, AU May 13, 2013 - May 18, 2013 Live Event

RSA Conference 2013 OnlineCAUS Feb 24, 2013 - Feb 25, 2013 Live Event

SANS OnDemand Books & MP3s OnlyUS Anytime Self Paced

http://www.sans.org/info/36919
http://www.sans.org/link.php?id=30585
http://www.sans.org/singapore-2013
http://www.sans.org/link.php?id=30022
http://www.sans.org/sans-2013
http://www.sans.org/link.php?id=31602
http://www.sans.org/sec573-python-pen-testers-2013
http://www.sans.org/link.php?id=30590
http://www.sans.org/secure-canberra-2013
http://www.sans.org/link.php?id=31762
http://www.sans.org/what-works-cyber-threat-2013
http://www.sans.org/link.php?id=30282
http://www.sans.org/monterey-2013
http://www.sans.org/link.php?id=30322
http://www.sans.org/abu-dhabi-2013
http://www.sans.org/link.php?id=30555
http://www.sans.org/delhi-2013
http://www.sans.org/link.php?id=26279
http://www.sans.org/northern-virginia-2013
http://www.sans.org/link.php?id=30327
http://www.sans.org/secure-europe-2013
http://www.sans.org/link.php?id=29434
http://www.sans.org/cyber-guardian-2013
http://www.sans.org/link.php?id=31980
http://www.sans.org/mgt442-beta-2013
http://www.sans.org/link.php?id=30755
http://www.sans.org/appsec-2013
http://www.sans.org/link.php?id=30997
http://www.sans.org/cybercon-2013
http://www.sans.org/link.php?id=30387
http://www.sans.org/cdk-seoul-2013
http://www.sans.org/link.php?id=31437
http://www.sans.org/critical-security-controls-international-summit
http://www.sans.org/link.php?id=31215
http://www.sans.org/india-2013
http://www.sans.org/link.php?id=30597
http://www.sans.org/security-west-2013
http://www.sans.org/link.php?id=31882
http://www.sans.org/web-security-summit-2013
http://www.sans.org/link.php?id=31652
http://www.sans.org/south-africa-may-2013
http://www.sans.org/link.php?id=30837
http://www.sans.org/brisbane-2013
http://www.sans.org/link.php?id=30450
http://www.sans.org/rsa-conf-2013
http://www.sans.org/link.php?id=1032
http://www.sans.org/ondemand/about.php

