

Proactive Detection of Security Incidents
Honeypots

[2012-11-20]

I

Proactive Detection of Security Incidents

 Honeypots

Contributors to this report

The report production was commissioned to CERT Polska (NASK).

Authors Contributors Editor

CERT Polska (NASK):

Tomasz Grudziecki

Paweł Jacewicz

Łukasz Juszczyk

Piotr Kijewski

Paweł Pawliński

CERT Polska (NASK):

Katarzyna Gorzelak

Przemysław Jaroszewski

ENISA:

Cosmin Ciobanu

Lauri Palkmets

Romain Bourgue

CERT Polska (NASK):

Piotr Kijewski

ENISA:

Cosmin Ciobanu

II
Proactive Detection of Security Incidents

Honeypots

Acknowledgements

We wish to thank the following members of the expert group for providing additional input:

Name Affiliation

Kara Nance University of Alaska

Christian Seifert Microsoft

Lukas Rist Norman

Angelo Dell'Aera Honeynet Project

Jan Goebel Siemens

Adel Karimi Honeynet Project

Felix Leder Norman

Vytautas Krakauskas LITNET CERT

Gerard Wagener CIRCL

Alexandre Dulaunoy CIRCL

Jon Rogeberg Mnemonic

Roland Cheung HKCERT

Carol Overes Fox-IT

Jeff Carpenter CERT/CC

Jose Nazario Arbor Networks

Steve Hall Barclays

Adam Kozakiewicz NASK

A special ‘Thank You’ to Kara Nance (Univ. of Alaska) for her comments and suggestions
 on how to improve this document.

III

Proactive Detection of Security Incidents

 Honeypots

About ENISA

The European Network and Information Security Agency (ENISA) is a centre of network and
information security expertise for the EU, its Member States, the private sector and Europe’s
citizens. ENISA works with these groups to develop advice and recommendations on good
practice in information security. It assists EU Member States in implementing relevant EU
legislation and works to improve the resilience of Europe’s critical information infrastructure
and networks. ENISA seeks to enhance existing expertise in EU Member States by supporting
the development of cross-border communities committed to improving network and
information security throughout the EU. More information about ENISA and its work can be
found at www.enisa.europa.eu

Follow us on Facebook Twitter LinkedIn Youtube & RSS feeds

Contact details

For contacting ENISA or for general enquiries on CERT-related information, please use the
following details: opsec@enisa.europa.eu

Internet: http://www.enisa.europa.eu

Legal notice

Notice must be taken that this publication represents the views and interpretations of the
authors and editors, unless stated otherwise. This publication should not be construed to be a
legal action of ENISA or the ENISA bodies unless adopted pursuant to the ENISA Regulation (EC)
No 460/2004 as lastly amended by Regulation (EU) No 580/2011. This publication does not
necessarily represent state-of the-art and ENISA may update it from time to time.

Third-party sources are quoted as appropriate. ENISA is not responsible for the content of the
external sources including external websites referenced in this publication.

This publication is intended for information purposes only. It must be accessible free of charge.
Neither ENISA nor any person acting on its behalf is responsible for the use that might be made
of the information contained in this publication.

Reproduction is authorised provided the source is acknowledged.

© European Network and Information Security Agency (ENISA), 2012

http://www.enisa.europa.eu/
http://www.facebook.com/ENISAEUAGENCY
https://twitter.com/enisa_eu
http://www.linkedin.com/company/european-network-and-information-security-agency-enisa-
http://www.youtube.com/user/ENISAvideos
http://www.enisa.europa.eu/front-page/RSS
mailto:opsec@enisa.europa.eu
http://www.enisa.europa.eu/

IV
Proactive Detection of Security Incidents

Honeypots

V

Proactive Detection of Security Incidents

 Honeypots

Contents

1 EXECUTIVE SUMMARY ... 11

2 INTRODUCTION AND BACKGROUND ... 15

2.1 STUDY OBJECTIVES .. 15
2.2 TARGET AUDIENCE .. 16
2.3 SCOPE ... 16
2.4 METHODOLOGY USED ... 17

2.4.1 Desktop research .. 17
2.4.2 Testing ... 17
2.4.3 Expert group ... 17
2.4.4 Analysis of results, creation of an exercise and the final report .. 18

3 BASIC CONCEPTS ... 19

3.1 WHAT IS A HONEYPOT? ... 19
3.2 TYPES OF HONEYPOTS (BASIC TAXONOMY) .. 19

3.2.1 Server-side honeypots ... 20
3.2.2 Client-side honeypots.. 20
3.2.3 Low-interaction honeypots ... 20
3.2.4 High-interaction honeypots... 21
3.2.5 Hybrid honeypots ... 21

3.3 PREVIOUS HONEYPOT TAXONOMIES .. 22
3.4 OUR TAXONOMY .. 24
3.5 HONEYPOTS VS SANDBOXES .. 25
3.6 HONEYPOTS VS DARKNETS (NETWORK TELESCOPES) .. 26
3.7 HONEYPOTS VS INTRUSION DETECTION/PREVENTION SYSTEMS .. 27
3.8 HONEYPOTS AND WEB SECURITY PROXIES ... 27

4 HONEYPOT DEPLOYMENT STRATEGIES .. 29

4.1 TYPICAL DEPLOYMENT FACING THE INTERNET ... 29
4.2 INTERNAL DEPLOYMENT ... 30
4.3 NETWORKS OF SENSORS ... 30
4.4 A NOTE ON THE RISK OF DETECTION... 30
4.5 LEGAL COUNSEL ... 31
4.6 CONSIDERATIONS AND REQUIREMENTS FOR DEPLOYMENT .. 31

4.6.1 Data control ... 31
4.6.2 Data capture .. 32
4.6.3 Data collection ... 32
4.6.4 Data analysis .. 32

4.7 SERVER HONEYPOTS .. 33
4.7.1 Advertisement .. 33
4.7.2 Location ... 33
4.7.3 Level of interaction ... 34
4.7.4 Sensor type ... 34
4.7.5 Honeynet characteristics... 35

4.8 CLIENT HONEYPOTS... 35

5 INVENTORY AND EVALUATION OF HONEYPOT SOLUTIONS ... 37

5.1 EVALUATION CRITERIA ... 37
5.1.1 Detection scope .. 37

VI
Proactive Detection of Security Incidents

Honeypots

5.1.2 Accuracy of emulation .. 38
5.1.3 Quality of collected data ... 39
5.1.4 Scalability and performance.. 40
5.1.5 Reliability ... 41
5.1.6 Extensibility .. 42
5.1.7 Ease of use and setting up .. 43
5.1.8 Embeddability .. 44
5.1.9 Support .. 45
5.1.10 Costs (Recommendations) .. 46
5.1.11 Recommendation on usefulness for CERTs .. 47

5.2 SERVER SIDE HONEYPOTS .. 48
5.2.1 High interaction server side honeypots .. 48

5.2.1.1 Argos ... 48
5.2.1.2 HiHAT ... 52
5.2.1.3 HoneyBow .. 55
5.2.1.4 Qebek .. 59
5.2.1.5 Sebek ... 61
5.2.1.6 Summary of high interaction server side honeypots .. 66

5.2.2 Low interaction server side honeypots... 67
5.2.2.1 General purpose honeypots .. 67

5.2.2.1.1 Amun .. 67
5.2.2.1.2 Dionaea... 71
5.2.2.1.3 KFsensor ... 73
5.2.2.1.4 Honeyd ... 76
5.2.2.1.5 Honeytrap ... 81
5.2.2.1.6 nepenthes ... 84
5.2.2.1.7 Tiny Honeypot ... 86

5.2.2.2 Web application honeypots .. 89
5.2.2.2.1 DShield Web Honeypot .. 89
5.2.2.2.2 GHH (Google Hack Honeypot) .. 91
5.2.2.2.3 Glastopf .. 95

5.2.2.3 SSH honeypots ... 98
5.2.2.3.1 Kippo .. 98
5.2.2.3.2 Kojoney ... 101

5.2.2.4 SCADA honeypots ... 104
5.2.2.4.1 SCADA HoneyNet Project ... 104
5.2.2.4.2 SCADA Honeynet (Digital Bond) ... 107

5.2.2.5 VoIP honeypots .. 111
5.2.2.5.1 Dionaea... 111
5.2.2.5.2 Artemisa ... 111

5.2.2.6 Bluetooth honeypot ... 115
5.2.2.6.1 Bluepot ... 115

5.2.2.7 Sinkholes .. 118
5.2.2.7.1 HoneySink ... 118

5.2.2.8 USB Honeypots ... 121
5.2.2.8.1 Ghost USB honeypot.. 121

5.2.2.9 Summary of low interaction server side honeypots ... 124
5.3 CLIENT SIDE HONEYPOTS ...125

5.3.1 Low-interaction client honeypots ...125
5.3.1.1 HoneyC .. 125
5.3.1.2 PHoneyC .. 128
5.3.1.3 Monkey-Spider ... 131
5.3.1.4 Thug ... 133
5.3.1.5 Summary .. 137

5.3.2 High-interaction client honeypots ..138

VII

Proactive Detection of Security Incidents

 Honeypots

5.3.2.1 Argos ... 138
5.3.2.2 Capture-HPC NG ... 138
5.3.2.3 Shelia ... 141
5.3.2.4 Trigona .. 145
5.3.2.5 Summary of high-interaction client honeypots .. 148

5.4 HYBRID HONEYPOTS AND SENSOR NETWORKS ...149
5.4.1 HoneySpider Network ..149
5.4.2 Early warning systems ...150
5.4.3 SURFcert IDS ..152

5.5 HONEYTOKENS ...153
5.5.1 Implementation ...154
5.5.2 Examples ...154

5.5.2.1 File system ... 154
5.5.2.2 Web server .. 155
5.5.2.3 Email .. 155
5.5.2.4 Financial bait .. 155
5.5.2.5 Copyrights .. 155

5.5.3 Data provision strategies ...155
5.5.3.1 Honeypots and honeytokens .. 156

5.5.4 Detecting the use of honeytokens ..156
5.5.4.1 Offensive techniques .. 156

6 INVENTORY OF COMMUNITIES, INITIATIVES AND OTHER HONEYPOT RELATED PROJECTS157

6.1 THE HONEYNET PROJECT...157
6.2 NOAH PROJECT ..157
6.3 WOMBAT ...158
6.4 ATLAS ARBOR...159
6.5 PROJECT HONEY POT ...159
6.6 WASC DISTRIBUTED WEB HONEYPOTS PROJECT ..160

7 SANDBOX TECHNOLOGIES AND ONLINE HONEYPOTS ...162

7.1 OVERVIEW OF SANDBOX TECHNOLOGIES..162
7.1.1 Cuckoo – a standalone solution for advanced malware analysis ...162
7.1.2 Online Sandboxes ..164

7.1.2.1 Anubis.. 165
7.1.2.2 COMODO Automated Analysis System .. 165
7.1.2.3 GFI Sandbox ... 166
7.1.2.4 Malwr .. 166
7.1.2.5 Xandora ... 167

7.2 ONLINE HONEYPOTS ..167
7.2.1 urlQuery ..168
7.2.2 Wepawet...169
7.2.3 JSUNPACK ...169

7.3 A SUMMARY AND WARNING...170

8 HONEYPOT SUPPORT TOOLS ..171

8.1 NEPENTHES SUPPORT TOOLS: PHARM ...171
8.2 DIONAEA SUPPORT TOOLS: CARNIWWHORE ..171
8.3 HONEYD SUPPORT TOOLS: HONEYVIEW, HONEYD2MYSQL, HONEYD-VIZ, HONEYD CONFIGURATION GUI, WINHONEYD AND

HOACD ..172
8.4 KIPPO SUPPORT TOOLS: KIPPO-GRAPH, KIPPO STATS AND DJANGO-KIPPO ..173
8.5 OTHER TOOLS ...173

8.5.1 Honeywall ...173

VIII
Proactive Detection of Security Incidents

Honeypots

8.5.2 HP Feeds ...174
8.5.3 HoneyStats ..175

9 RECOMMENDED HONEYPOT SOLUTIONS ...176

9.1 THE QUICK WIN ...176
9.2 WITH ADDITIONAL EFFORT ...177
9.3 FOR THE RESEARCHERS ...177

10 SHORTCOMINGS, RECOMMENDATIONS AND FUTURE WORK ..178

10.1 BARRIERS TO USAGE AND DEPLOYMENT ..178
10.2 GENERAL RECOMMENDATIONS FOR CERTS ...180
10.3 FUTURE DEVELOPMENT AND RESEARCH ..181

11 CONCLUSION ..184

12 ANNEX I: ABBREVIATIONS ..185

IX

Proactive Detection of Security Incidents

 Honeypots

List of Tables

Table 1: Summary of tested standalone honeypot solutions .. 13

Table 2: Quality of collected data – evaluation components .. 39

Table 3: Scalability and performance – evaluation components ... 40

Table 4: Reliability – evaluation components ... 41

Table 5: Extensibility – evaluation components .. 42

Table 6: Ease of use and setting up – evaluation components .. 43

Table 7: Embeddability – evaluation components .. 45

Table 8: Support – evaluation components .. 45

Table 9: Costs – evaluation components .. 46

Table 10: Popular services and honeypots best suited to handle attacks directed at them ... 176

11

Proactive Detection of Security Incidents

Honeypots

1 Executive Summary

An increasing number of complex attacks demand improved early warning detection
capabilities for CERTs. By having threat intelligence collected without any impact on
production infrastructure, CERTs can better defend their constituencies assets. Honeypots are
powerful tools that can be used to achieve this goal. This document is the final report of the
‘Proactive Detection of Security Incidents: Honeypots’ study. The study was initiated to
investigate more in-depth honeypot technologies that can be used by CERTs in general and
national/governmental (n/g) CERTs in particular to proactively detect and capture network
attacks directed at their constituencies. The study is a follow-up to a previous more generic
study on ‘Proactive Detection of Network Security Incidents’,1 also conducted by ENISA.
Among the findings of that study was the fact that while honeypots are recognised by CERTs
as useful tools that can be utilised to detect and study attacks, their usage in the CERT
community was not as wide as could be expected, which implies that barriers exist to their
deployment.

The core of the document is an investigation of existing honeypot and related technologies,
with a focus on open-source solutions, also because not many commercial solutions are
available and testing would involves extra costs. Basic honeypot concepts and deployment
strategies are covered, to help CERTs gain a better understanding of the critical issues related
to deployment. The intention of the study is to focus on the practicality of a solution, not
necessarily its research or academic value. Hence, to help CERTs, as part of the study we have
introduced criteria that had mostly not been used before for evaluation of honeypots. The
goal: to offer insight into which solutions are best from the point of view of deployment and
usage by a security team – particularly a CERT team, making it easier for a new team to select
which honeypot technology to deploy. The evaluation includes results of actual testing of
solutions, rather than just desktop research. Overall, a total of 30 different standalone
honeypots were tested and evaluated, including: low-interaction server honeypots (general
purpose, web, SSH, SCADA, VoIP, USB, sinkholes), high-interaction server honeypots, and low
and high-interaction client-side honeypots. Additionally, various hybrid solutions, Early
Warning Systems based on honeypots, online honeypots and sandboxes and their possible
usage by CERTs are also introduced. The study also explores the future of honeypots.

The study found a number of possible barriers for deployment (see Chapter 10). These
include: difficulty with usage, poor documentation, lack of software stability, lack of developer
support, little standardisation and in general a requirement for highly skilled people to handle
and maintain honeypots, as well as problems in the CERT community in understanding basic
honeypot concepts. Nevertheless, if deployed correctly, honeypot benefits for CERTs are
found to be considerable.

1https://www.enisa.europa.eu/activities/cert/support/proactive-detection/proactive-detection-
report/at_download/fullReport

12
Proactive Detection of Security Incidents

Honeypots

The study recommended three groups of solutions to consider for possible deployment. The
most important are a group of the most mature and ready to use honeypots: dionaea (see
section 5.2.2.1.2), Glastopf (see section 5.2.2.2.3), kippo (see section 5.2.2.3.1) and Honeyd
(see section 5.2.2.1.4). SURFcert IDS (see section 5.4.3) is a good solution for deploying a
network of server-side honeypot sensors.

For those CERTs that can devote more resources to maintaining their honeypot deployments,
but in exchange gain the capability to detect malicious websites, client honeypots such as
Thug (see section 5.3.1.4) and Capture-HPC NG (see section 5.3.2.1) are found to be worth
considering. Finally, for those able to devote resources to research and further development,
Argos (see section 5.2.1.1) and the development of client honeypots based on the Cuckoo
sandbox (see section 7.1.1) are possible selections.

Honeypots offer great insight into malicious activity in a CERT’s constituency, providing early
warning of malware infections, new exploits, vulnerabilities and malware behaviour as well as
an excellent opportunity to learn about changes in attacker tactics. The study therefore
recommends that CERTs explore the possibility of deploying honeypots across their
constituency (a set of general recommendations can be found in section 10.2). Using
honeypots as sensors can be easier than other technologies, as they normally do not monitor
production level traffic, making privacy issues a lesser concern. To combat the increasing
cyber threat, CERTs need to cooperate and develop large-scale interconnected sensor
networks in order to collect threat intelligence from multiple distributed geographic areas.
Again, honeypots are ideal for this purpose. Honeypots can also be used to combat the insider
threat. Nevertheless, they often still require some work to meet the needs of CERTs. In order
for honeypot technologies to meet these expectations, CERTs and honeypot researchers are
encouraged to work together. CERTs should reach out and take part in the honeypot
communities identified in this study, giving feedback, researching new ideas and aiding in
development. The end goal: powerful and reliable tools that help CERTs and others make the
Internet a safer place.

13

Proactive Detection of Security Incidents

Honeypots

Table 1: Summary of tested standalone honeypot solutions

NAME D
ET

EC
T

IO
N

SC
O

P
E

A
C

C
U

R
A

C
Y

O
F

EM
U

LA
TI

O
N

Q
U

A
LI

TY
 O

F

C
O

LL
EC

TE
D

 D
A

T
A

SC
A

LA
B

IL
IT

Y
 A

N
D

P
ER

FO
R

M
A

N
C

E

R
EL

IA
B

IL
IT

Y

EX
TE

N
SI

B
IL

IT
Y

EA
SE

 O
F

U
SE

A
N

D
 S

E
TT

IN
G

 U
P

EM
B

E
D

D
A

B
IL

IT
Y

SU
P

P
O

R
T

C
O

ST

U
SE

FU
LN

E
SS

 F

O
R

 C
ER

T

LOW-INTERACTION SERVER-SIDE HONEYPOTS

General purpose honeypots

Amun MULTI $
Dionaea MULTI $
KFsensor MULTI $$
Honeyd MULTI $
Honeytrap MULTI $$
Nepenthes MULTI $$
Tiny Honeypot MULTI $$

Web application honeypots

DShield Web Honeypot SPEC $$
Google Hack Honeypot SPEC $
Glastopf SPEC $

SSH Honeypots

Kippo SPEC $$
Kojoney SPEC $$$

SCADA Honeypots

SCADA HoneyNet Project MULTI $
SCADA HoneyNet (Digital Bond) MULTI $$

VoIP Honeypots

Artemisa SPEC $$
Bluetooth Honeypots

Bluepot SPEC $$$
Sinkholes

HoneySink MULTI $$
USB Honeypots

Ghost USB honeypot SPEC N/A $$$

14
Proactive Detection of Security Incidents

Honeypots

NAME D
ET

EC
T

IO
N

SC
O

P
E

A
C

C
U

R
A

C
Y

O
F

EM
U

LA
TI

O
N

Q
U

A
LI

TY
 O

F

C
O

LL
EC

TE
D

 D
A

T
A

SC
A

LA
B

IL
IT

Y
 A

N
D

P
ER

FO
R

M
A

N
C

E

R
EL

IA
B

IL
IT

Y

EX
TE

N
SI

B
IL

IT
Y

EA
SE

 O
F

U
SE

A
N

D
 S

E
TT

IN
G

 U
P

EM
B

E
D

D
A

B
IL

IT
Y

SU
P

P
O

R
T

C
O

ST

U
SE

FU
LN

E
SS

 F
O

R
 C

ER
T

HIGH-INTERACTION SERVER-SIDE HONEYPOTS

Argos MULTI N/A $$
HiHAT SPEC N/A $$$
HoneyBow MULTI N/A $$
Qebek MULTI N/A $$
Sebek MULTI N/A $$

LOW-INTERACTION CLIENT-SIDE HONEYPOTS

HoneyC SPEC $$
PHoneyC MULTI $$
Monkey-Spider SPEC $$$
Thug MULTI $$

HIGH-INTERACTION CLIENT-SIDE HONEYPOTS

Capture-HPC NG MULTI N/A $$
Shelia MULTI N/A $$
Trigona MULTI N/A $$$

Legend:

Detection scope Rating Cost Usefulness for CERT

MULTI Multi-function
Excellent $ Low Essential

 Good $$ Medium Useful

SPEC Specialised Fair $$$ High Not useful

 Poor

15

Proactive Detection of Security Incidents

Honeypots

2 Introduction and background

This document is the final report of the ‘Proactive Detection of Security Incidents: Honeypot‘
study conducted between April 2012 and September 2012. The study is aimed at identifying
and improving ways that CERTs can utilise honeypot technology to proactively detect security
incidents. The document is structured as follows:

 Chapter 2 Introduction and background explains in more detail the research objectives of
the study, intended target audience and the methodology used to draw up the report.

 Chapter 3 Basic concepts gives an introduction to honeypots, terminology and some
taxonomy.

 Chapter 4 Honeypot deployment strategies explains common deployment strategies
involving honeypots that can be utilised by CERTs.

 Chapter 5 Inventory and evaluation of honeypot solutions presents an inventory of various
types of honeypots along with their evaluation. Evaluation criteria used in this process are also
clearly defined and explained in this chapter.

 Chapter 6 Inventory of communities, initiatives and other honeypot-related projects
gives an overview of various initiatives related to honeypots, past, present and future.

 Chapter 7 Sandbox technologies and online honeypots gives a brief overview of online
technologies that CERTs can use to supplement their own honeypot deployments. An overview
of sandboxes that can be used for additional malware analysis is also given.

 Chapter 8 Honeypot support tools provides an overview of other supporting tools that can
be used to better utilise honeypot technologies, analyse and visualise their logs.

 Chapter 9 Recommended honeypot solutions summarises our honeypot evaluation and
gives recommendations on what solutions should be deployed by CERTs.

 Chapter 10 Shortcomings, recommendations and future work summarises findings of the
study related to obstacles to deployment faced by CERTs, weaknesses of available tools, gives
general recommendations and looks at the possible future of honeypots.

 Chapter 11 Conclusion

 Attachment I: Abbreviations

2.1 Study objectives

This study is a follow-up to a previous ENISA study – ‘Proactive Detection of Network Security
Incidents‘ carried out in 20112, aimed at identifying and improving ways of how CERTs in
general proactively detect network incidents. One of the findings of the previous study was
that CERTs are underutilising honeypot technologies (and other malware analysis
technologies, such as sandboxes) as a means of detecting incidents and gathering information
about security threats. As a result, a decision was made to investigate this issue further to
obtain a better understanding why that is the case, resulting in a study with the following
objectives:

2 K. Gorzelak, T. Grudziecki, P. Jacewicz, P. Jaroszewski, Ł. Juszczyk, P. Kijewski, A. Belasovs (editor), Proactive Detection of
Network Security Incidents, ENISA report, December 2011 [available from
http://www.enisa.europa.eu/activities/cert/support/proactive-detection/]

http://www.enisa.europa.eu/activities/cert/support/proactive-detection/
http://www.enisa.europa.eu/activities/cert/support/proactive-detection/
http://www.enisa.europa.eu/activities/cert/support/proactive-detection/
http://www.enisa.europa.eu/activities/cert/support/proactive-detection/
http://www.enisa.europa.eu/activities/cert/support/proactive-detection/
http://www.enisa.europa.eu/activities/cert/support/proactive-detection/
http://www.enisa.europa.eu/activities/cert/support/proactive-detection/
http://www.enisa.europa.eu/activities/cert/support/proactive-detection/
http://www.enisa.europa.eu/activities/cert/support/proactive-detection/
http://www.enisa.europa.eu/activities/cert/support/proactive-detection/
http://www.enisa.europa.eu/activities/cert/support/proactive-detection/
http://www.enisa.europa.eu/activities/cert/support/proactive-detection/
http://www.enisa.europa.eu/activities/cert/support/proactive-detection/
http://www.enisa.europa.eu/activities/cert/support/proactive-detection/
http://www.enisa.europa.eu/activities/cert/support/proactive-detection/
http://www.enisa.europa.eu/activities/cert/support/proactive-detection/
http://www.enisa.europa.eu/activities/cert/support/proactive-detection/
http://www.enisa.europa.eu/activities/cert/support/proactive-detection/
http://www.enisa.europa.eu/activities/cert/support/proactive-detection/
http://www.enisa.europa.eu/activities/cert/support/proactive-detection/

16
Proactive Detection of Security Incidents

Honeypots

 to provide an inventory of available honeypot solutions for proactive detection of network

security incidents, which are already used or potentially could be used by national /

governmental and other CERTs,

 to analyse the benefits and shortcomings of the identified measures,

 to identify good practice and recommended measures for new and already established

national / governmental and other CERTs,

 to outline possible further activities in order to mitigate the common shortcomings identified

during the analysis, including tasks and roles of different stakeholders.

2.2 Target audience

The intended target audience for this report are the managers and technical staff of national
/governmental CERTs. However, the report can be used by any other CERT or security abuse
team. It is aimed at both new and existing CERTs. New CERTs can use the report to quickly
learn which honeypot and sandbox technologies to focus on when deploying such solutions,
while existing CERTs can identify technologies they may be missing. They can also use the
suggestions and findings in the report to engage in possible collaborative development efforts
with researchers and other CERTs in order to aid their detection and incident handling
process. Security researchers in the honeypot area may also benefit from the report. Last but
not least, honeypot authors may see the report as valuable since much of what is presented
here is hopefully well grounded in field experience and expert feedback.

2.3 Scope

The primary focus area of the report is an inventory and in-depth investigation of open-source
standalone honeypot solutions that can be deployed by CERTs. The expectation is that they
can be easily downloaded and installed by any CERT. Also in the scope of the study are open-
source hybrid solutions that use honeypots to create networks of sensors, as well as freely
available online honeypots that can be used to investigate suspicious URLs. This is
supplemented with a more general overview and list of selected sandbox technologies which
can be used by CERTs for malware analysis, often the second step once honeypots are used to
obtain malicious artefacts. Honeypot communities are identified. Finally honeypot
shortcomings are also investigated, as are barriers to their deployment specific to the CERT
community. An in-depth investigation of sandbox technologies is beyond the scope of this
study.

We would like to stress that the focus is on honeypots that we were able to download and
install – those that exist in solely in academic papers or those that for some reason are not
available anymore or simply obsolete are not included (examples of such include obsolete
wireless honeypots – we were unable to download any working example, and the still largely
academic mobile application honeypots).

17

Proactive Detection of Security Incidents

Honeypots

2.4 Methodology used

This section describes in more detail the methodology used in this study and creation of the
final report.

2.4.1 Desktop research

In this activity, information was gathered about open-source honeypot solutions which can be
deployed by CERTs either in their own networks or in their constituency in order to
proactively detect security incidents. Among those investigated were solutions such as server-
side honeypots, SCADA/PLC/ICS honeypots, bluetooth honeypots, client honeypots as well as
web application honeypots. Experiences of the CERT Polska team in honeypot, client
honeypot design and deployment (such as the HoneySpider Network client honeypot system –
see section 5.4.1), management of network early warning systems (such as ARAKIS3), and
results of analysis of data of such systems were included. The study was also extended to
include hybrid honeypot solutions, online honeypots and a very general overview of sandbox
technologies. Individual expertise and experience of team members helped to provide added
value in this research.

2.4.2 Testing

In order to obtain deeper insight into the current state of honeypots and potential reasons for
their relative lack of popularity amongst CERTs (see section 10.1), it was decided that the
standalone solutions available will not just be evaluated based on their descriptions or expert
knowledge concerning their functionality, but also tested. This turned out to be a significant
challenge, as it involved investigating over 30 solutions – some of which turned out to be too
obsolete to include in this study. For testing purposes, a set of criteria were developed to
provide as accurate as possible descriptions of important key features that can directly impact
the deployment, proactive detection and incident handling processes. These criteria, unlike
others developed in the academia in the past, were very much focused on practicality:
detection scope, accuracy of emulation, quality of collected data, scalability and performance,
reliability, extensibility, ease of use and setting up, embeddability, support, as well as two
meta-criteria, cost and usefulness for CERTs.

2.4.3 Expert group

As part of this task an expert group was established. A Terms of Reference document for the
work of the expert group was created to better explain the vision and goals of the study to
facilitate better interaction within the expert group. The list of experts included specialists
from multiple communities: researchers involved in honeypot development, CERTs, academia,
ISPs, security enthusiasts, other end users and specialists in the intrusion detection area. To
facilitate the exchange of information, an email discussion list was established, hosted by

3 http://www.arakis.pl

http://www.arakis.pl/

18
Proactive Detection of Security Incidents

Honeypots

CERT Polska. Experts on the list were asked to take part in the discussion of interim results of
the study and to review the draft and final report.

2.4.4 Analysis of results, creation of an exercise and the final report

Once the testing of solutions was completed, the project team started to analyse the results
of the tests. This allowed for the achievement of two key goals of the project: a) identification
of the honeypot solutions that best responded to the established criteria as well as b)
honeypot weaknesses and obstacles to the deployment of honeypots in the CERT community.
A set of recommendations suggesting which honeypots to deploy was then developed, along
with typical scenarios of deployment. The analysis also served to create an exercise for CERTs
on how to select and use honeypots to detect and analyse network attacks, in the ENISA CERT
Exercise format4. Additionally, a write up was done of basic honeypot concepts. This led to the
creation of a draft of the final report. The draft was then sent to ENISA and the expert group
for comment. Feedback from ENISA and the experts was then incorporated in the final report.

4 http://www.enisa.europa.eu/activities/cert/support/exercise/

http://www.enisa.europa.eu/activities/cert/support/exercise/

19

Proactive Detection of Security Incidents

Honeypots

3 Basic concepts

3.1 What is a honeypot?

A honeypot is in general a computing resource, whose sole task is to be probed, attacked,
compromised, used or accessed in any other unauthorised way5 6.The resource could be
essentially of any type: a service, an application, a system or set of systems or simply just a
piece of information/data. The key assumption is that any entity connecting to or attempting
to use this resource in any way is by definition suspicious. All activity between honeypot and
any entity (assumed to be an adversary) interacting with it is monitored and analysed in order
to detect and confirm attempts of unauthorised usage (in particular: malicious or abusive
activity). A honeypot should mimic a production resource in its behaviour as accurately as
possible – from an attacker’s point of view there should be no noticeable difference between
a honeypot resource and a production one. Resources represented by honeypots are non-
production. Moreover, those resources should be isolated from any production environment.
No legitimate traffic should reach the honeypot (this rule does not necessarily apply to client
honeypots – see description below).

Honeypots can be used for many different purposes, for instance for the monitoring of
Internet background noise (scanning activity of worms or bots), learning about compromised
nodes, identifying new exploits and vulnerabilities, capturing new malware, studying hacker
behaviour, looking for internal infections or attacks from insiders, etc. Naturally, the purpose
of deployment impacts both the honeypot technology selection and the way it will be
deployed.

3.2 Types of honeypots (basic taxonomy)

Honeypots may be classified based on two fundamental and independent criteria (classes):
type of attacked resources, and level of interaction. This taxonomy is very basic and fits all
other (more complex) honeypot taxonomies.

First criterion (class) – type of attacked resources – describes whether a honeypot’s resources
are exploited in server- or client-mode. A server-side honeypot utilises network services such
as SSH or NetBIOS, listening on their standard ports and monitoring any connections initiated
by remote clients. In contrast, a client-side honeypot will employ a set of client applications,
such as a web browser, that connect to remote services and monitor all generated activity.

The second criterion (class) – level of interaction – determines if the honeypot is a real
resource (high-interaction) or only an emulated one (low-interaction). A mixed type of
honeypot which combines both functionalities is called a hybrid honeypot.

5A good introduction to honeypots can be found in the book: Lance Spitzner, ‘Honeypots: Tracking Hackers’, Addison-Wesley
Professional (September 20, 2002)

6 Many explanations of honeypot concepts and applications can be found at the Honeynet Project homepage. Especially
noteworthy are the KYE (Know Your Enemy) and KYT (Know Your Tools) papers: https://www.honeynet.org/papers

https://www.honeynet.org/papers

20
Proactive Detection of Security Incidents

Honeypots

3.2.1 Server-side honeypots

Honeypots designed to detect and study attacks on network services are called server-side.
Honeypots of this type act as a server – they expose an open port, multiple ports or whole
applications and listen passively for incoming connections, established by remote (likely
malicious) clients. Often these types of honeypots detect threats which use scanning as means
of identifying potential victims to compromise – for instance scanning worms or bots – but
they can also be used to detect manual attempts to break into machines. Server-side
honeypots are considered to be the ‘traditional’ honeypots, and often the term ‘honeypots’ is
by default associated with them.

3.2.2 Client-side honeypots

Honeypots designed to detect attacks on client applications are called client-side honeypots,
often honeyclients for short. A client application is a piece of software that establishes a
connection to a server and interacts with it. The most popular and the most targeted type of
client-side applications are web browsers, together with associated extensions and plugins.

Client-side honeypots are very different in their operation from server-side ones. Honeyclients
actively establish connections to services in order to detect malicious behaviour of either the
server or the content it serves. The most popular honeyclients are those detecting attacks on
web browsers and their plugins, propagated via web pages. Some also have the capability to
look at various forms of attachments, and there have been attempts to create instant
message honeypots as well.

3.2.3 Low-interaction honeypots

Low-interaction honeypots are tools that operate by emulating their resources: services (in
case of server-side honeypots) or client applications (in case of honeyclients). Emulation in
this context means that the resources mimicked by a honeypot resource are limited in their
functionality when compared to real ones. Interaction with an attacker is limited to some
degree by the accuracy of emulation. Naturally, resources of a honeypot should be as similar
to their real equivalents as possible. This degree of accuracy greatly affects the interaction
process between the honeypot and the attacker. Insufficient accuracy may cause attacks to
terminate early, even before the actual malicious actions take place. It also makes the
honeypot much easier to detect.

The main advantage of low-interaction honeypots is that they tend to be easier to deploy and
maintain. The user has full control over the attack and the infection process. It is then possible
to determine the current stage of an attack, which constitutes valuable information.
Emulation also reduces the risk of the system becoming compromised. On the other hand,
low-interaction honeypots have some disadvantages. An inherent weakness is their low
accuracy of emulation. In specific cases emulated resources tend to behave in a different way
than real ones, no matter how thorough an attempt was made by the creators. This could
cause the attack or infection to terminate before its final phase, or the honeypot to be
detected. Another issue is the fact that it is impossible to emulate not-yet-known

21

Proactive Detection of Security Incidents

Honeypots

vulnerabilities (so called 0-day vulnerabilities). All activity, especially in early stages of the
attacks, must be coded into a honeypot’s logic as an attacker tool expects a specific sequence
of actions.

3.2.4 High-interaction honeypots

High-interaction honeypots are tools that provide real operating systems and resources (client
applications or services). Note that the fact that ‘real’ systems and resources are utilised
means they are not emulated. However, it is possible to use a virtual environment for such
purposes, and it is in fact a common practice. In this concept, scenarios of interaction with the
attacker are virtually unlimited, so a compromise or infection process should be fully
completed in all cases.

Real behaviour of both the operating system and resources during the attack is the main
advantage of high-interaction honeypots. This type of honeypot is able to detect attacks on 0-
day vulnerabilities. Still, detection scope is limited only to specific (versions of) applications
installed in the honeypot environment; an attack targeting an application in a particular
version does not necessarily affect the same application in other versions, whether previous
ones or newer.

The amount of data collected by high-interaction honeypots can be extensive and richer than
from low-interaction tools. On the other hand, due to the complexity of the honeypot
environment, there are problems in determining which elements of system/application
behaviour are suspicious or malicious, and which are benign. For example: it may be not clear
which read/write operations performed on the memory or disk are legitimate, and which ones
are symptoms of exploitation.

Another disadvantage of high-interaction honeypots is limited control of the attack steps. The
risk of compromising real systems, and losing control of the honeypot as a consequence, is
higher than with the low-interaction counterpart. Another issue is that high-interaction
honeypots require more resources compared to low-interaction ones, due to their complexity.
This affects scalability and performance. Furthermore, deployment and usage of high-
interaction honeypots, including their configuration and management, requires significant
effort.

3.2.5 Hybrid honeypots

Hybrid honeypots combine both low-interaction and high-interaction tools in order to gain the
benefits of both. Three well-known hybrid tools are described in this document (see section
5.4): server-side (SurfCERT IDS, SGNET) and client-side (HoneySpider Network).

In SGNET, a high-interaction server-side honeypot is used to learn how to handle unknown
traffic, e.g. how to emulate new protocols. After this learning process, further similar traffic is
redirected to low-interaction server-side honeypots. This combination increases both threat
detection level and performance. SurfCERT IDS utilises multiple low-interaction server
honeypots and Argos (see section 5.2.1.1), a high-interaction solution. Similarly in

22
Proactive Detection of Security Incidents

Honeypots

HoneySpider Network a low-interaction honeyclient filters out benign websites, while all
others (suspicious or malicious) are analysed again – this time with high-interaction
honeyclients.

3.3 Previous honeypot taxonomies

One of the best known honeypot taxonomies is that created by Christian Seifert, Ian Welch
and Peter Komisarczuk.7 The authors defined six classes. The classes are defined within a flat
relationship model instead of a hierarchical one, with no subclasses. This taxonomy is
presented below and contains classes (marked in bold) with possible values (marked in bold +
italic):

 Interaction level – describes whether the resource is limited in the way it exposes its
functionality. This criterion is very similar to the previously mentioned level of
interaction. Possible values are:

o Low – exposed functionality is somehow limited,
o High – exposed functionality is not limited in any way.

 Data Capture – describes the type of data a tool is able to capture from an attack point
of view. Possible values (one tool can have multiple values assigned) are:

o Events – tool collects data about changes in state,
o Attacks – tool collects malicious activity (security policy violation attempt),
o Intrusions – tool collects malicious activity that leads to a security failure

(cracking) i.e. system compromise or infection,
o None – tool does not collect events, attacks, or intrusions.

 Containment – describes measures a tool takes to defend against/constrain malicious
activity spreading from itself. Possible values (one tool can have multiple values
assigned) are:

o Block – malicious activity is identified and blocked (attack never reaches the
target),

o Defuse – malicious activity is permitted, but is defused (attack reaches the
target, but is manipulated in a way so that it fails),

o Slow Down – malicious activity is slowed down,
o None – no action is taken to limit the malicious activity.

 Distribution Appearance – describes whether the honeypot system appears to be
confined to one system or multiple systems (from an attack point of view). Possible
values are:

o Distributed – honeypot is or appears to be composed of multiple systems,
o Stand-Alone – honeypot is or appears to be one system.

 Communication Interface – describes interfaces one can use to interact directly with
the honeypot. Possible values are:

7 Christian Seifert, Ian Welch, Peter Komisarczuk, ‘Taxonomy of Honeypots’, Technical Report CS-TR-06/12, VICTORIA
UNIVERSITY OF WELLINGTON, School of Mathematical and Computing Sciences, June 2006, available from
[http://www.mcs.vuw.ac.nz/comp/Publications/CS-TR-06-12.abs.htm]

http://www.mcs.vuw.ac.nz/comp/Publications/CS-TR-06-12.abs.htm

23

Proactive Detection of Security Incidents

Honeypots

o Network Interface – the tool can be directly communicated with via a network
interface,

o Non-Network Hardware Interface – the tool can be directly communicated
with via a hardware interface other than a network interface (i.e. USB),

o Software API – the tool can be communicated with via software API,
 Role in Multi-tier Architecture – describes in what role the honeypot acts within a

multi-tier architecture. This class is very similar to the previously mentioned type of
attacked resources. Possible values are:

o Server – the tool is acting as a server,
o Client – the tool is acting as a client application.

Figure 1: Taxonomy used in paper by Christian Seifert et al

The taxonomy presented above was created because no sufficient taxonomy had existed at
that time. It presents a well-researched work. However, it is quite complex and academic, and
has irrelevant classes from our more practically oriented point of view (such as Containment
or Communication Interface).

Niels Provos and Thorsten Holz in their book Virtual Honeypots: From Botnet Tracking to
Intrusion Detection8 presented a simple and elementary classification schema. Honeypots are
divided into low- and high-interaction and distinguished between physical and virtual
honeypots. The first pair of values is similar to corresponding ones in previously described
taxonomies. The second pair constitutes a new class with two values:

● Physical honeypot – describes a real machine on the network,
● Virtual honeypot – describes resources simulated by another machine.

8 Niels Provos, Thorsten Holz (2007), ‘Virtual Honeypots: From Botnet Tracking to Intrusion Detection’, Pearson Education.

24
Proactive Detection of Security Incidents

Honeypots

A physical honeypot can be fully compromised, so often this tool implies high interaction.

Later authors extend the interaction-based class with a third value: hybrid systems. As in the
basic taxonomy, hybrid systems combine both low-interaction and high-interaction tools in
order to gain the advantages of both.

Another extension defines client honeypots (similarly as in our basic taxonomy, this tools deal
with client application threats). The authors had assumed that the term honeypot is originally
synonymous with server-side honeypot.

In summary, Provos and Holz defined a very similar taxonomy to the basic one described
earlier in this chapter and extended it with the concept of physical and virtual honeypots,
somewhat similar to our distinction between high- and low-interaction ones.

3.4 Our taxonomy

For the purposes of this document, we expand the basic taxonomy described in section 3.2.
Definitions of criteria (classes) and their particular values are still valid, but we will add an
extra class and values in order to improve the research and presentation of its results.

Figure 2: Graphical representation of the classification scheme of taxonomy used in the report

25

Proactive Detection of Security Incidents

Honeypots

In the type of attacked resources class we added a third value: honeytokens. A honeytoken is
any resource stored or processed by a computer system (for example: a text file, an email
message or a database record) which cannot be retrieved under normal conditions in a
production environment. In other words, any access to honeytoken data should be considered
a malicious action. Honeytokens are described in detail in section 5.5.

We also define a new subclass of server-side honeypots. The main reason for this addition is
to clarify and organise the inventory. It helps to segregate tools that have slightly different
purposes or principles of operation and group together concepts that have similar ones,
making comparison of similar concepts somewhat easier.

The new subclass is specialisation of server-side honeypots. This criterion defines what
service or attack/detection technique is the main scope of a given honeypot. There are seven
possible values of this subclass:

 Web application honeypots – tools aimed at detection of attacks on web applications,
 SSH honeypots – tools oriented on Secure Shell (SSH) attacks,
 SCADA honeypots – tools emulating industrial control systems,
 VoIP honeypots – tools detecting threats in internet telephony (Voice over IP),
 Bluetooth honeypots – tools aimed at detection of attacks propagating through the
Bluetooth technology,
 USB honeypots – tools aimed at detecting attacks using USB devices,
 Sinkholes – tools using a ‘sinkhole’ technique to detect and monitor infections in a
network,
 General purpose honeypots – tools aimed at detection of more than one attack
technique or more than one service.

Note that we focus on honeypot classes that we were able to download and install – those
that exist in solely in academic papers or those that for some reason are not available
anymore or simply obsolete are not included in the taxonomy (examples of such include
obsolete wireless honeypots (we were unable to download any functioning one), and the still
largely academic mobile application honeypots).

Low-interaction client-side honeypots could also be classified according to their
specialisations, but in our inventory there are only tools detecting attacks against web
browsers and their plugins (including PDF file readers, flash players, etc.). Therefore, no
additional classification has been defined for low-interaction honeyclients.

The taxonomy used in our research is described below. White rectangles represent classes
and subclasses while rounded dotted boxes represent class members.

3.5 Honeypots vs sandboxes

Sandboxes (in IT security) are tools used for automated behavioural analysis of potential
malware in an isolated physical or more often virtual environment. A typical sandbox will
open the analysed file, e.g. run an executable file or open a document with appropriate
reader and monitor all changes and interactions caused in the system. In particular it provides

26
Proactive Detection of Security Incidents

Honeypots

information about changes in the file system, registry, processes, loaded libraries, as well as
captured network traffic. Sandboxes vary in types of performed analysis, level of details
monitored, etc. They are instrumented and that allows them to control the information
provided.

Typically, sandboxes are used to analyse binary executable files. But increasingly these tools
are also used in analysis of documents (files opened in word processors, spreadsheets, PDF
readers, etc.) and web pages (monitoring changes in the system after a browser opens the
page). This means that sandbox techniques can be used to detect and analyse threats
targeting client applications. Consequently, some sandboxes may offer functionality similar to
client-side honeypots.

The main distinction between a sandbox and a honeyclient is in usage goals. Sandboxes are
more focused on in-depth analysis of infection process and actions performed by malware
afterwards, while the goal of a honeyclient is to determine whether something is malicious in
the first place, and only then to optionally identify mechanisms leading to the infection.
Honeypots rarely monitor what happens after an infection is successful.

Experts also pointed out the sandboxes differ from classic high-interaction honeypots in terms
of their isolation component. If a piece of malware tries to contact an IRC server from a
sandbox, nothing will likely happen unless you create an entity in the sandbox that can provide
the interaction the malware is looking for. Obviously a high-interaction honeypot will talk
directly to the real IRC server. Similarly sandbox experiments are generally repeatable, which
is not necessarily true with a high-interaction honeypot.9

In practice, another distinction between the two concepts can be made on the basis of their
mode of operation. Usually sandboxes run for longer periods of time than honeypots. This is
because their purpose is to focus more on analysis of behaviour after the infection had taken
place.

In summary, sandboxes and honeyclients are quite similar tools, but they differ in their
purpose. In fact, they should be treated as two complementary techniques that are able to
cooperate with each other. Honeypots focus on mechanisms leading to an infection, while
sandboxes perform in-depth analysis of malware and the actions it takes after the infection.
An example sequence of events showing such cooperation could be as follows: first a
honeyclient analyses a website, and upon obtaining a suspicious file, sends it to a sandbox for
further long-time analysis (for example: botnet tracking). In many cases sandbox technologies
can easily be adapted for use as honeypots. Note that detailed discussion of sandboxes is
beyond the scope of this report.

3.6 Honeypots vs darknets (network telescopes)

Darknets or network telescopes are networks with the sole purpose to observe traffic directed
to them. They are used to observe and study large-scale events, for example worm

9 Kara Nance during expert group comments

27

Proactive Detection of Security Incidents

Honeypots

propagation models, rather than specific exploits or vulnerabilities that such a worm may use.
As with honeypots, unused routable IP address space of an organisation can be utilised for
these purposes. All traffic heading to a darknet is by definition suspicious. However, unlike
honeypots, these networks do not engage in any form of interaction with incoming traffic ie.
they are passive. Another difference is in scale: in order to observe large scale events,
darknets usually span much larger netblocks. In some cases, like the UCSD Network
Telescope10, an entire /8 fragment of an IPv4 address space is allocated to a darknet. Traffic
seen on a darknet includes large automated scanning, worm or scanning bot activity,
backscatter of DDoS attacks and misconfigured network devices.

3.7 Honeypots vs Intrusion Detection/Prevention systems

An Intrusion Detection System (IDS) is a software component (often integrated with a
hardware device, especially in the case of commercial solutions) that monitors and analyses
network traffic or operating system behaviour for unauthorised or malicious activities. An IDS
system typically works in a passive mode: it detects a threat, logs information and triggers an
alert. An Intrusion Prevention System (IPS) is similar to an IDS, but typically works in an active
mode: it is able to block malicious behaviour.

Honeypots are often used for intrusion detection as well. However, they cannot be seen as a
replacement for an IDS product. Honeypots are resources that are expected to be accessed by
an adversary only, not systems for monitoring production level traffic. This simplifies the
intrusion detection problem: honeypots are inherently less prone to false positives but are
generally more specific and probably require greater administration overhead. On the
downside, they will not detect any attack that is directed at production resources (i.e. not
directed at the honeypot). Consequently, they will also not be able to block an attack directed
at a production resource. This means that IDS/IPS systems therefore have a better coverage of
attacks and attack types against a network (at a price of higher false positives). Therefore,
honeypots and IDS/IPS can be seen as complementary technologies: honeypots may be able
to detect attacks that are missed by IDS/IPS (sometimes due to the overwhelming number of
alerts such systems can generate, sometimes because, for example, the IDS/IPS lacks a
signature to detect an attack). On the other hand, IDS/IPS can be used as part of a system to
redirect attackers away from production resources to a honeypot instead.

3.8 Honeypots and web security proxies

A web proxy server has the capability to intercept and analyse all HTTP traffic between a
browser and a web server. From the point of view of the browser, this can be a completely
transparent process. Proxy servers can be used as part of honeypot installations in order to
gain better insight into traffic coming to and from an attacker. For example they can be used
to implement blacklists, AV engines or intrusion detection rules. Detailed discussions of web

10 http://www.caida.org/projects/network_telescope/

http://www.caida.org/projects/network_telescope/

28
Proactive Detection of Security Incidents

Honeypots

proxies are beyond the scope of this study, but they are often a useful element of a honeypot
deployment.11

11 The HoneyProxy tool may be a useful starting point: http://www.honeynet.org/node/898. Mitmproxy is another interesting
solution: http://mitmproxy.org/

http://www.honeynet.org/node/898
http://mitmproxy.org/

29

Proactive Detection of Security Incidents

Honeypots

4 Honeypot deployment strategies

There are several strategies for deploying honeypots. They range from installation of a single
honeypot to creating a whole network of honeypots – a honeynet. Strategies depend on the
placement of honeypots, type of data sought, as well as the amount of resources one is willing
to invest in the effort. This chapter aims to provide an overview of typical honeypot
deployments.

Gathering information is one of the main honeypot functions. Depending on where, how and
which honeypot will be deployed, different types of information can be gathered.

4.1 Typical deployment facing the Internet

The most common deployment for honeypots is a configuration facing the Internet. This
scenario is the one typically used if a honeynet is set up for research purposes, to capture
malware samples for further analysis, or
to track network worm activity or simply
to study a hacker’s behaviour. This may
also include observing the Internet
malicious activity (background noise) as
well as learning about new
vulnerabilities and exploits. CERTs can
use such a deployment to collect
information about infections in their
constituency. In this case, a honeypot
should be accessible directly from the
outside (see Figure 3) or located in a
DMZ.12 This deployment can also be
used when building a farm of client
honeypots.

12 Demilitarised zone – Perimeter security

Figure 3: Typical honeypot deployment facing
the Internet

30
Proactive Detection of Security Incidents

Honeypots

4.2 Internal deployment

One can also place honeypots in production network segments in order to detect
compromised systems and learn about internal infections13 and the insider threat (see Figure
4). The honeypot should then be placed in a different LAN segment and assigned a previously
unallocated IP address. Care must be taken that legitimate traffic does not end up on the
honeypot, as that may trigger false positives. Since the honeypot does not have any
production value, any interaction with it (barring
configuration errors) will imply unwanted or
otherwise malicious activity.

Apart from being used as a sensor, honeypots
can also be used to study what happens after a
network infrastructure is compromised by an
attacker. As one expert14 pointed out during the
study, in some cases it can be helpful to turn the
laptop, desktop or whatever system that is
already compromised into a honeypot to closely
monitor an attacker and find out what other
systems in the network are also compromised.
Especially in the context of targeted attacks or
so-called Advanced Persistent Threats (APTs),
such an approach can be very helpful, since these
attackers move around your network using legitimate credentials whenever possible, and use
malware or noisy attacks only in certain cases, e.g. to create bridgeheads into the network. Of
course this approach is not very easy as one has to allow the attacker to still access your
network or your honeynet needs to be very realistic to not be detected right away.

4.3 Networks of sensors

Honeypots can be used as sensors of a wider threat detection system. These sensors can be
deployed across a CERT’s constituency, providing a threat detection and situational awareness
capability. In the case of server-side honeypots, these sensors can either face the Internet,
consist of internal deployments, or both. For more insight into this type of architecture, see
section 4.7.4 and examples of such systems in section 5.4.

4.4 A note on the risk of detection

Since it is impossible to completely secure a honeypot, one has to be aware of the risk
associated with its deployment. In order to serve its purpose, a honeypot should not be easily
identifiable by an attacker. When compromised, the value of a honeypot is dramatically

13 such as lateral connections from other internal computers compromised by intruders

14 Jan Goebel, during expert group discussions

Figure 4: An internal deployment of
a honeypot

31

Proactive Detection of Security Incidents

Honeypots

reduced (unless of course long-term observation of an attacker’s activity on the honeypot was
the primary goal of deployment). An attacker can avoid or bypass the honeypot network or
even introduce misleading data into a honeypot, which can significantly hinder data analysis
or make it utterly impossible. Furthermore, an intruder can of course try to attack other
systems connected to the honeypot.

There are several ways to detect a honeypot and if an attacker is carefully looking for signs of
deception, sooner or later these will be spotted. Most of the honeypots, especially low-
interaction ones, have some unique characteristics, which can be fingerprinted, such as
hardcoded strings, specific service banners or incorrect protocol implementation.

4.5 Legal counsel

Legal and ethical issues may potentially exist with a honeypot deployment. For example: what
liability issues arise if a honeypot is used to successfully attack another system? A study of
these issues is outside the scope of this study. Nevertheless, we encourage CERTs to consult
on the potential legal implications of usage of honeypots in their country/constituency with a
legal counsel.

4.6 Considerations and requirements for deployment

Successful deployment of a honeypot has to meet some requirements. These are described
according to the following categories: data control, data capture, data collection and data
analysis.15

4.6.1 Data control

As already stressed, an important thing to remember when deploying a honeypot is the
associated risk factor. A honeypot is designed to interact with an attacker. Eventually, this
may lead to them gaining some form of control over it. A successful attacker can obtain
information which might be used for unlawful activities such as compromise of other systems,
sending spam or spreading a worm.

Accordingly, the network where the honeypots are located has to be a tightly controlled. It is
essential to monitor and control both incoming and outgoing traffic. For example, it is sensible
for outbound connections, except those towards the initiator’s site and a set of predefined
hosts such as DNS servers, to be denied. Specifically, it is good practice to block at least
outgoing connections to external SMTP servers (port 25/TCP) to prevent sending unwanted
messages. Alternatively, more elaborate configurations can include building fake SMTP, HTTP
proxies, DNS services, etc., complete with logging and alerting, giving the security team as
much control of the environment as possible, but at the same time making it appear suitably
realistic.

15 The Honeynet Project (2006), ‘Know Your Enemy: Honeynets’, available from
[http://project.honeynet.org/papers/honeynet/index.html]

http://project.honeynet.org/papers/honeynet/index.html

32
Proactive Detection of Security Incidents

Honeypots

Generally, honeypots should be deployed in a physically separate subnet, so that network
traffic associated with them will not interfere with legitimate traffic on the production
network. On the other hand, it makes perfect sense to mix IP addresses used in a honeynet
with addresses of production networks and/or a DMZ. Such a setup requires a significant
amount of time spent on configuration of routing devices, but this one-time effort would be
offset by the benefit of making honeypots much harder to distinguish from real servers.

Mechanisms of data control may include, but are not limited to, deploying intrusion
detection/prevention systems, bandwidth restrictions and firewalls. A combination of various
techniques is always a good idea. Not only does it eliminate a single point of failure, but it also
helps to protect against evading a single device.

The Honeynet Project provides a ready to run solution named Honeywall, which is made to
act as a honeynet gateway and firewall (see section 8.5.1).

4.6.2 Data capture

In order to understand how attacks are conducted and what techniques are used by attackers,
one has to capture all the activity associated with the honeynet. This means that all
information that enters or leaves the honeypots must be logged. This, of course, should be
done without the attacker knowing it. Even though the honeypots tested in this study
generally offer their own logs, they are never complete – especially if they are to be used for
forensics purposes. Therefore, it must be stressed that external network and system tools
should be set up to log data separately.

Captured data should be stored in a different location than the honeypot itself, so that if the
attacker compromises a honeypot system the data cannot be altered or destroyed.

4.6.3 Data collection

In general, it makes sense to store data gathered from a honeypot (or a honeynet) outside the
infrastructure that is responsible for direct interaction with an attacker. This may be done in a
distributed fashion across multiple servers or in simpler setups, just to one centralised
location. The primary motivation is the protection of data integrity (for example, to foil
attempts by an attacker to delete their traces). When all logs and binary files are collected and
stored outside the deployed sensors, access to the data is guaranteed regardless of what
happened with a honeypot. Exact setups can vary according to an organisation’s needs,
amount of data collected, network infrastructure, resources that can be committed, etc.
These can be very individual; hence detailed discussion of this topic is outside the scope of
this study. One piece of advice: whatever you do, please remember the need for time
synchronisation across all the honeypots and other nodes in your setup, through solutions
such as NTP.

4.6.4 Data analysis

It is essential to have the ability to analyse the collected data, i.e. to extract valuable
information from it. This may include, for example, looking for new types of attacks, post-

33

Proactive Detection of Security Incidents

Honeypots

intrusion forensics or long-term trend analysis. Analysis goals can therefore have serious
implications for the data collection and storage process, outlined in section 4.6.3. During the
study, we discovered that most honeypots do not provide complete classification of the
discovered threats – interpreting and analysing the data can be a significant challenge.
Unfortunately, this study found analytical tools lacking. An overview of various support tools,
including some analytical ones, can be found in section 8. Extracting knowledge comes at a
price: CERTs have to make a judicious choice about what to collect and analyse.

4.7 Server honeypots

Depending on one’s needs there are a few things that have to be considered before deploying
a server honeypot.

4.7.1 Advertisement

In most cases the presence of a honeypot is not advertised. However, in certain circumstances
one can choose to announce the honeypot’s address and/or direct traffic to it in other ways.
The advertisement techniques may include website positioning (in case of a web honeypot) or
use of a honeytoken. Note that the idea is not to advertise a honeypot as a honeypot, but as a
seemingly legitimate resource so as to lure attackers to it.

In order to lure attackers into a honeypot, one can consider using a suitable attractive name
(domain, server banner, etc.) such as ‘Company Main FTP Server’.

4.7.2 Location

The most common way to deploy a honeypot is to place it at a location where it is accessible
from the outside network, i.e. the Internet. The honeypot can be configured to use an
external IP address or be placed in the DMZ. This type of installation will serve typical research
or proactive detection objectives. Note that it is wise to install a honeypot on a network that
is not visibly associated with a CERT.

Another possibility is to place honeypots in a segment of the production network. The
purpose of such honeypot would be acting as an early warning system on internal problems.
Such a honeypot would be able to detect automated malware activity, or unlawful users’
actions, which may indicate an insider threat.

34
Proactive Detection of Security Incidents

Honeypots

4.7.3 Level of interaction

Basically, there are two different types of server-side honeypots: low and high interaction (see
section 3.2). With regard to their deployment, low-interaction honeypots are easier to install
and maintain, but may not be able to perform an automated exploitation investigation
process completely. Low-interaction honeypots are also easier to detect by an attacker.

Figure 5: A low-interaction honeypot redirecting selected traffic to high-interaction solutions

When designing a honeynet, one may set up a low-interaction honeypot, i.e. Honeyd, which
would proxy requests for defined ports to a high-interaction honeypot (or another low-
interaction one, but one better able to handle emulation of a given service). Thus, services on
predefined ports will be well emulated, while on the rest of the ports some samples will be
still captured. Another benefit of the aforementioned setup is that Honeyd is capable of
emulation of TCP/IP stack in Microsoft Windows. This example is illustrated below:

4.7.4 Sensor type

Two types of honeypot nodes can be distinguished in a honeynet’s architecture: a fat sensor
and a thin sensor. A fat sensor is a complete computer system, which runs a honeypot as well
as other applications, and which process the captured data. Only after processing, data from

the node is sent to the
central server for further
analysis and correlation.

A thin sensor, on the other
hand, is just a reflector – it
forwards all the
connections directly to the
central server. All the
processing and data
analysis takes place in the
central place of the Figure 6: A fat sensor architecture

35

Proactive Detection of Security Incidents

Honeypots

honeypot system, where
multiple honeypot nodes can
emulate different services.
Connection forwarding can be
implemented in the form of
an IP tunnel between the
sensor and the central server.

In a different approach a
firewall/gateway can direct
connections to a honeypot based on source addresses instead of the destination address. One
can imagine a scenario in which an IPS, instead of blocking abuse attemps, redirects the
attacker to a honeypot.16

4.7.5 Honeynet characteristics

It might seem a good idea to dedicate all available unused IP addresses and ports to the
honeynet. However, this may not always be the case. A large number of IP addresses
responding on all (or at least many) ports in a similar way may raise the attacker’s suspicions
and actually facilitate identification of the honeynet. For this reason, it may be sensible to
make ‘gaps’ in the address space, i.e. not to use several IP addresses in a row. The same
applies to the range of ports: honeypots emulating different services can listen on different
network addresses. Note that in most cases it is better to have just a few addresses in a
number of different networks separated from each other both physically and logically than
many IP addresses on a single network.

With a tool such as Arpd17 it is possible to use multiple IP addresses on a single host without
the need of creating many virtual interfaces.

4.8 Client honeypots

Proper deployment of client honeypots is less demanding in terms of things to consider.

Most importantly, all requests from a client honeypot should be handled through a proxy
server allowing a dynamic change of client’s IP address. This functionality will come handy in
at least two scenarios:

 when malicious content is served only once per client’s IP address,

 when the client honeypot’s address is blacklisted by a malicious server.

It may be a great advantage to secure IP addresses from a number of different providers
(including large commercial ISPs) and the ability to switch the proxy between them at will.
Some of the providers may even offer dynamic IP addresses, changing with every DHCP lease.

16 For an example, see Honeybrid, http://honeybrid.sourceforge.net/

17 Arpd, http://www.honeyd.org/tools.php

Figure 7: A thin sensor architecture

http://honeybrid.sourceforge.net/
http://www.honeyd.org/tools.php

36
Proactive Detection of Security Incidents

Honeypots

In the case of client honeypots, there is probably a less of a need for interleaving network
addresses with production machines. A completely isolated network may be sufficient. If
deployed in a production network, additional effort should be made to isolate the honeypot in
other network layers. It is very likely that a high-interaction client honeypot will eventually get
infected and will try to spread malicious activity over the network.

37

Proactive Detection of Security Incidents

Honeypots

5 Inventory and evaluation of honeypot solutions

This section describes the core part of the study, consisting of an inventory and evaluation of
honeypot solutions. The primary focus is on standalone, free, publicly available honeypot
solutions that can be downloaded and used by a CERT team. These solutions were tested and
evaluated according to the criteria introduced in this chapter. Additionally, this chapter has
been extended to include hybrid solutions and early warning systems that utilise honeypot
technologies. The evaluation criteria do not apply to these types of systems – extended
descriptions are provided instead. Note that while an effort has been made to describe the
criteria used for evaluation and carry out tests in a manner that is as objective as possible, the
authors acknowledge that some interpretation of the results may be subjective and up for
discussion, especially with configurable systems.

5.1 Evaluation criteria

The honeypots that have been analysed were evaluated according to the list of criteria
described in this section. Each criterion has a well-defined grading scale. In addition to normal
evaluation criteria, there are two meta-criteria that summarise overall cost and usefulness for
a CERT.

Note that the intention of the study was to focus on the practicality of a solution, not
necessarily its research or academic value. This meant the development of new criteria for
evaluation. The objective was to offer insight into which solutions are best from the point of
view of deployment and usage by a security team – particularly a CERT team.

5.1.1 Detection scope

Detection scope describes the range of different attack vectors that can be detected by the
honeypot. For server-side honeypots it is the total number of services that an attacker can
interact with. For client-side honeypots it is defined as the number of different applications
(also in the form of plugins, e.g. PDF viewers for web browsers) that can take part in the
interaction with a remote attacker. The rating is not dependent on the quality (accuracy) of
the emulation. In contrast to all other criteria, rating is not quantitative but informational only
(hence the rather generic definitions) – depending on specific requirements, a more
specialised or generic solution may be preferred.

Specialised
Specialised detection scope solutions focus on monitoring attacks on a single class of
applications/services or protocols. It may be useful but requires additional honeypots to cover
other applications/services or threats.

Multi-function
Multi-function solutions can be used for monitoring more than a single class of
applications/services or protocols. It may consist of a predefined set of applications, usually
with the capability of adding more functionality beyond that offered by the authors.

38
Proactive Detection of Security Incidents

Honeypots

5.1.2 Accuracy of emulation

Accuracy of emulation describes the similarity of the application (for client honeypots) or
service (for server honeypots) emulated by the honeypot to its real counterpart. Accuracy,
sophistication of interaction with the attacker and the difficulty in identifying the presence of
a honeypot were evaluated. This rating is not dependent on the detection scope.

Note: This criterion does not apply to high-interaction honeypots, which offer real
applications or services.

Poor
Applications (or services) do not provide for any interaction with the attacker (with the
exception of functionality provided by the operating system, e.g. completing a TCP
handshake) or the emulation is completely incorrect.

Fair
The solution is able to emulate the initial phase of interaction between a service or an
application and the attacker. The honeypot is easy to detect, e.g. sends incorrect responses to
standard requests.

Good
The behaviour of applications or services is emulated fairly well, although not perfectly – the
honeypot can sustain interaction with the attacker even after the initial phase. Detection of
the honeypot requires purposeful, atypical actions and the likelihood of accidental disclosure
by an incorrect reaction is small.

Excellent
At least one application or service is emulated at a very advanced level. Accidental disclosure
of the honeypot is unlikely. Detection of the honeypot is very difficult – it requires the use of
sophisticated methods focused on detecting minor faults in the emulation. Alternatively, an
attacker would have to analyse application-level data provided by the honeypot to find
inconsistencies (e.g. not enough detail, outdated information).

39

Proactive Detection of Security Incidents

Honeypots

5.1.3 Quality of collected data

Quality of Collected Data Evaluation Components

Rating Excellent

Good

Fair

Poor

Scope of metadata Rich / Customisable Rich Basic
No metadata /
Accidental

Metadata quality
Good /
Easy to analyse

Correct /
Easy to analyse

Correct Incorrect / Poor

Automatic
classification

Very reliable Mostly reliable No classification / Unreliable

Table 2: Quality of collected data – evaluation components

This criterion is a measurement of the quality of data (in the context of a security system)
provided by the solution. The assessment is focused on the additional information (metadata)
describing captured traffic, which serves to enrich the raw data. (‘Raw data’ was defined as
unprocessed, uninterpreted and unfiltered data captured as a result of the honeypot’s
activity, e.g. full network traffic in the PCAP format, memory and file system dumps).
Metadata consists of contexts of data acquisition (time, addresses, etc.) and results of any
processing of raw data that the solution performs (e.g. decoding details of high-level
protocols). Additionally, we take into account whether the solution performs automatic
classification of events and the quality of such classification (i.e. presence of false positives).

Poor
The system does not collect any metadata or they are very limited, difficult to obtain and are
an accidental by-product rather than a result of proper analyses (e.g. when obtaining the
exact date and time of an event can be done only by reading timestamps of a log file).
Alternatively, gathered metadata is flawed, distorted and misleading as a result of faults of
the software. No automatic classification of events or a very low quality of classification.

Fair
Collected metadata is limited but it contains most of the information that is relevant in the
context of a security system. No automatic classification of events, or the classification has
very poor accuracy.

Good
The solution provides rich, easy-to-analyse metadata and its scope is partially customisable
but there is no automatic classification of events, or it has a very poor accuracy. Alternatively,
the honeypot provides a sufficient, albeit incomplete set of metadata, and is complemented
by automatic classification mechanisms that give results reliable enough to utilise them as
auxiliary information for security systems.

Excellent
The solution provides rich, complete and easy-to-analyse metadata, and its scope is

40
Proactive Detection of Security Incidents

Honeypots

customisable. All events are automatically classified according to multiple criteria,
customisable to a degree. Classification results are of a high quality.

5.1.4 Scalability and performance

Scalability and Performance Evaluation Components

Rating Excellent

Good

Fair

Poor

Simultaneous sessions Hundreds or more Several dozen Few One

Throughput High Average Low

Table 3: Scalability and performance – evaluation components

Scalability and performance evaluates throughput of a single instance of the tool and the
ability to distribute the load among multiple concurrent processes or computing nodes within
a single honeypot system (horizontal scalability). The number of simultaneous sessions that
can be handled by the honeypot – both incoming (e.g. SSH connection) and outgoing (e.g.
interaction with a remote HTTP server) – when installed on a single server is also an important
evaluation component. To estimate the performance, we assume that the solution will be
deployed on a typical contemporary server, with the following approximate hardware
parameters: 4 CPU cores, 16 GB RAM, an array of magnetic (non-SSD) hard disks. Note that for
evaluation purposes we are comparing honeypots against their corresponding real-world
applications. For example a web app honeypot may receive quite a high number of parallel
requests per second and must be able to handle them. On the other hand a USB honeypot is
probably attacked infrequently and thus has plenty of time to handle the attack.

Poor
The tool installed on one server cannot handle more than a single session at a time. The
reason may be insufficient throughput or architectural limitations. It is difficult to scale the
solution horizontally, or an increase in throughput achieved this way is not proportional to
allocated resources.

Fair
The tool installed on one server can handle multiple simultaneous sessions. Throughput of the
honeypot may be slightly below average in comparison to other solutions with a similar
detection scope. The tool does not provide any mechanisms that would simplify horizontal
scaling; nevertheless, it is feasible.

Good
The solution deployed on a single server is able to handle many simultaneous sessions.
Throughput of the honeypot is comparable to other solutions with a similar detection scope.
The tool does not provide any mechanisms that would simplify horizontal scaling;
nevertheless, it is feasible.

41

Proactive Detection of Security Incidents

Honeypots

Excellent
The honeypot installed on a single server is able to handle a large number of simultaneous
connections offering significantly higher throughput than competing solutions. The tool is
designed for horizontal scaling and provides extra facilities that make such deployment easy.

5.1.5 Reliability

Reliability Evaluation Components

Rating Excellent

Good

Fair

Poor

Continuous working
time

Over 1 month 15–30 days 3–14 days Less than 72 hours

Supervision Minimal Custom tools Continuous

Stability under load No problems Minor issues Occasional problems Serious problems

Incorrect data Not observed Observed

Table 4: Reliability – evaluation components

Reliability corresponds to the stability of the solution under load. Problems like unresponsive
processes, abnormal shutdowns and other cases of incorrect runtime behaviour are included
here. The purpose of this evaluation is to determine the cost of administration of a given
solution (amount of supervision required) and to identify tools that can cause problems after
deployment. Naturally, certain conditions that cause instability of the tool might not occur
during tests. This assessment is partially based on unverified user reviews and
approximations, as well as expert knowledge of the testers, not necessarily formal test time
benchmark analysis.

Poor
In conditions similar to the production environment, the tool has serious problems within 72
hours from start and requires significant administrative supervision.

Fair
There are occasional (irregular) issues with stable operation in conditions similar to the
production environment (e.g. unexpected termination of a process). Alternatively, symptoms
of other problems that may affect stability of the tool or the entire system (e.g. incorrect
addressing of resources, memory leaks) were observed. The honeypot requires custom
monitoring procedures, e.g. creating a script for monitoring software. The tool should run
continuously without problems for at least 72 hours, which allows restriction of human
supervision to normal working hours.

Good
No unexpected application termination or hung process were observed, or they occur only in
well-identified cases not present in standard use, e.g. when using experimental plugins. Minor

42
Proactive Detection of Security Incidents

Honeypots

problems that do not affect the stability of the solution in medium-term operation
(approximately one month), such as small memory leaks, are acceptable.

Excellent
The tool works reliably in the long period. There are no signs of any problems that may occur
at a later time, after the solution is deployed in the production environment.

5.1.6 Extensibility

Extensibility Evaluation Components

Rating
Excellent

Good

Fair

Poor

Plugins API Complete Limited None

Source code
modifications

Easy Average Difficult
Impossible or too

expensive

Table 5: Extensibility – evaluation components

Extensibility measures the difficulty of extending existing functionality of the tool in order to
adjust it to specific requirements. Such adaptation can be accomplished through creation of
additional plugins (modules) or by modifying the honeypot’s source code. This property
determines if a honeypot can be adapted to detect new types of threats. Note: detailed
source code analysis is beyond the scope of this document and, despite our best efforts,
evaluation of code quality, comments, documentation, etc., may be subjective and cursory.

Poor
Extending the functionality of the tool is nearly impossible or too costly. There is no support
for plugins. Source code is unavailable (proprietary software) or very difficult to modify (e.g.
unreadable code, no documentation or unusual programming language and technologies).

Fair
Architecture of the honeypot is not suited for extensions (no support for plugins) but the code
is open and it is feasible to adapt it. There is some documentation available, source code is
not written in an unusual programming language and has comments. This grade is also valid
for solutions where source code cannot be modified but which provide mechanisms to add
custom plugins, as long as plugins can influence all aspects of the honeypot. Plugins may be
difficult to implement due to a lack of documentation or lack of a stable programming
interface (API) which changes significantly between versions. In summary, customisation of
such a honeypot is possible but involves a substantial effort.

Good
The tool has a modular architecture and there are built-in mechanisms for adding new
extensions, preferably as external plugins. Source code is available for modification, relatively
easy to comprehend and, at least in the most complex parts, documented in comments or
other form of developer’s documentation. However, the plugin API can have limitations and

43

Proactive Detection of Security Incidents

Honeypots

modifying the core software may still be difficult. Rating also applies to proprietary solutions,
offering a convenient, easy-to-use and versatile mechanism to create plugins.

Excellent
The tool has a modular architecture and there are multiple extensions existing already. The
source code is open, written using a popular language and libraries, is comprehensible and
well documented – modification is not too difficult. A plugin system allows addition of new
modules in a convenient way and their implementation is relatively easy.

5.1.7 Ease of use and setting up

Ease of use and setting up Evaluation Components

Rating
Excellent

Good

Fair

Poor

User documentation Exhaustive Basic None

Installation Easy Requires technical knowledge Difficult

Monitoring Extra facilities Standard logging
Additional tools
required

Configurability All parameters
Important
parameters

Very limited

Structure of
configuration

Structured / Convenient to manage Basic structure
Unorganised /
Overlapping settings

Modifying
configuration

Plain text files
Dedicated tools
only

Changes to source
code

User interface
Complete text and graphical
user interface, easy to use

Complete /
Readable

Basic / Readable None / Unreadable

Table 6: Ease of use and setting up – evaluation components

Ease of use and setting up applies to the ease of use, management and configuration of the
solution. In particular, it takes into account the complexity of installation, configuration,
everyday usage and monitoring. Elements of the software that were most important in this
evaluation include the user interface, configuration parameters, and availability of
documentation. A single, independent instance of each tool was evaluated – running multiple
instances or exchanging data with other systems falls outside of scope of this criterion.

Poor
Normal usage, configuration and management of the honeypot is complicated and requires a
lot of effort. The installation procedure is difficult and requires extensive technical knowledge
(e.g. patching the source code, using non-standard versions of system libraries). There is no
user documentation in any form. After installing, the honeypot’s configuration requires
significant customisation before it can work correctly (software is not usable ‘out of the box’).
In order to change a single setting (e.g. IP addresses to monitor), one has to introduce

44
Proactive Detection of Security Incidents

Honeypots

multiple changes in the configuration. Only a very limited set of parameters is configurable
and changing others may require modifications of the source code. The honeypot does not log
its operations, so additional tools are required to monitor its status (e.g. open ports). There is
no user interface or it is unreadable and cumbersome to use (no matter what scope of
information it provides). Difficulties are foreseen in the usage and management of the tool in
a production environment.

Fair
Installation requires some level of technical knowledge, but it is not difficult (e.g. it requires
compilation from sources). There is at least basic user documentation. Most important
parameters of the honeypot are configurable and do not require modifications in the source
code. Configuration may be available not in plain text files but in some binary format, which
can be accessed only through additional tools. In some cases change of a single parameter
might require multiple modifications of the honeypot’s configuration. The tool logs its actions
and all changes of its state. A basic user interface provides information about the current
state of the tool in a readable manner.

Good
Installation requires some level of technical knowledge, but it does not take much time and
effort. All parameters of the honeypot are configurable; each setting is defined exactly in a
single, easily identifiable location. It is not necessary to use special tools to modify the
configuration – it is stored in plain text files. The tool logs its actions and all changes of its
state. All information can be accessed through a user interface that is easy to use.

Excellent
Installation, configuration and management of the solution is convenient and requires little
effort. There are installation packages for selected operating systems. All parameters of the
honeypot are configurable; each setting is defined exactly in a single, easily identifiable
location. The tool has additional mechanisms for monitoring its status in real time and is able
to gather statistics about its work. A clear and readable interactive graphical user interface is
provided that presents a complete set of information and simplifies management of the
honeypot.

5.1.8 Embeddability

Embeddability Evaluation Components

Rating Excellent

Good

Fair

Poor

API Complete Basic None

Output format Standard Custom, easy to parse Custom, difficult to parse

Output
customisation

Configurable Fixed

Automation Easy, dynamic Easy, using files Average Too expensive

45

Proactive Detection of Security Incidents

Honeypots

Table 7: Embeddability – evaluation components

Embeddability is a measure of a solution’s ability to integrate with other tools or to function in
a larger system through interfaces provided by the honeypot. (The possibility of adapting the
tool for these purposes was not taken into account, since it is already covered by the criterion
‘extensibility’ – see section 5.1.6).

Poor
The tool does not have any built-in interfaces to handle communication with other software.
Format of the output data is difficult to parse and process. Automation of management of the
honeypot requires significant effort and may be too expensive to implement.

Fair
The tool has rudimentary mechanisms for exchanging basic operational data. Output data is
not given in a standard format (e.g. XML), so it is not possible to use existing libraries, but
implementing a custom parser is not difficult. Automation of management of the honeypot is
possible, but requires a substantial amount of effort.

Good
The tool has a programming interface (API) that supports all major functions. Output data is
generated in one of the standard formats (e.g. XML, SQL, JSON). Automation of management
of the honeypot is straightforward but reconfiguration must be performed through files and is
associated with restarting the service.

Excellent
The tool has a programming interface (API) that supports all major functions. Output data is
generated in one of the standard formats (e.g. XML, SQL, JSON), moreover its scope and/or
form is configurable. Automation of management of the honeypot is easy and a
reconfiguration can be performed in runtime (the service applies changes immediately). The
overall cost of integrating the tool within a larger system, and making it cooperate with other
solutions, is low.

5.1.9 Support

Support Evaluation Components

Rating Excellent

Good

Fair

Poor

Activity Active development
Maintained /
no new features

Maintained /
documentation only

Abandoned

Support Commercial Community only No support

Community Large and active Little activity No community

Table 8: Support – evaluation components

46
Proactive Detection of Security Incidents

Honeypots

Support describes the level to which the honeypot is supported by its creators and the
community. An important factor affecting the grade is the current state of the project –
whether it is still actively developed.

Poor
The honeypot is not maintained or developed by anyone, nor does it have any active support.

Fair
The honeypot is maintained, but support is limited to documentation only – reference
manuals, FAQs, etc. The latest available version does not contain major defects and has a
well-organised community of users that provide help, develop auxiliary modules, etc.

Good
The solution is maintained but no new major features are being added. It can be expected
that most problems can be solved either by referring to the documentation or by the
community, using standard support facilities such as forums, mailing lists, etc.

Excellent
The solution is actively developed and new features are added as needed. Commercial
support is available or there is an active and helpful community, which takes part in
development of the software, e.g. creates add-ons, patches.

5.1.10 Costs (Recommendations)

Costs Evaluation Components

Rating
High

$$$

Medium

$$

Low

$

Licence Closed or open Open

Scalability and
performance

Poor At least fair

Reliability Poor Fair Good or excellent

Extensibility Poor Good Excellent

Ease of use Poor Good or excellent

Embeddability Poor Fair Excellent

Table 9: Costs – evaluation components

Costs is a meta-criterion for evaluation of the total cost of deploying the solution in a typical
CERT. The overall grade is based on the following criteria: scalability and performance (see
section 5.1.4), reliability (see section 5.1.5), extensibility (see section 5.1.6), ease of use (see
section 5.1.7) and embeddability (see section 5.1.8). In addition, the type of software licence
was also a contributing factor for the evaluation.

47

Proactive Detection of Security Incidents

Honeypots

High
The overall cost of deployment of the honeypot is high. This applies to the cost of licences,
required human supervision, effort related to integration with other systems and costs of
hardware resources.

Medium
The overall cost of deployment of the honeypot in a typical environment is moderate. It is
expected that the cost may increase significantly if there are any special requirements related
to throughput, integration or reliability. Commercial licences are acceptable, unless they are
exceptionally expensive or restrict the tool’s functionality.

Low
The overall cost of deployment of the honeypot is relatively low. This grade is used only for
solutions with open-source licences.

5.1.11 Recommendation on usefulness for CERTs

Usefulness for CERTs is a meta-criterion that describes how much useful data can be gathered
by the honeypot if it is deployed by a CERT. Final evaluation is a combination of all previous
criteria, with focus on detection scope (see section 5.1.1), accuracy of service emulation (see
section 5.1.2) and quality of collected data (see section 5.1.3). Note that such judgement can
often be subjective, and a lot depends on what a security team wants to achieve or is
interested in.

 Not useful
The tool does not gather any data relevant for CERT operations, or much better alternative
tools are available.

 Useful
The tool can provide interesting data, relevant for a CERT. It is valuable at least as an auxiliary
data source.

 Essential
The honeypot can provide valuable information about observed traffic and can be very useful
as a part of any network monitoring system operated by a CERT.

48
Proactive Detection of Security Incidents

Honeypots

5.2 Server-side honeypots

This section describes the server-side honeypots that were tested and evaluated. These were
grouped into two main categories: high-interaction and low-interaction honeypots.

5.2.1 High-interaction server-side honeypots

A total of five high-interaction honeypots were downloaded and tested. Their ratings are
summarised at the end of this section.

5.2.1.1 Argos

D
ET

EC
TI

O
N

SC

O
P

E

Q
U

A
LI

TY
 O

F
C

O
LL

E
CT

ED
 D

A
TA

SC
A

LA
B

IL
IT

Y
A

N
D

P

ER
FO

R
M

A
N

C
E

R
EL

IA
B

IL
IT

Y

EX
TE

N
SI

B
IL

IT
Y

EA
SE

 O
F

U
SE

A

N
D

 S
ET

TI
N

G
 U

P

EM
B

ED
D

A
B

IL
IT

Y

SU
P

P
O

R
T

C
O

ST

U
SE

FU
LN

ES
S

 F

O
R

 C
ER

T

MULTI $$

Detection scope Rating Cost Usefulness for CERT

MULTI Multi-function Excellent $ Low Essential

 Good $$ Medium Useful

SPEC Specialised Fair $$$ High Not useful

 Poor

Version tested: 0.5.0

Date tested: 31 July 2012

Testing time: 2 days with simulated load

Website: http://www.few.vu.nl/argos/

Argos is a QEMU-based, high-interaction honeypot that uses taint analysis to detect the first
phase of an attack. Taint analysis allows exact pinpointing of the CPU instruction that diverts
the normal control flow of application or kernel code to the location under control of an
attacker. The solution can detect both server and client-side attacks; however, the latter
require agent software running on the guest system. Thanks to its detection capabilities,
Argos can function as an advertised honeypot, with external links pointing to its services, and
still be able to distinguish between malicious and benign incoming traffic.

The honeypot is a result of a research project but it was adopted as a detection component in
several monitoring systems, most notably SURFcert IDS (5.4.3). Companion research tools
were created for Argos, including Sweetbait18 – a system for extraction of attack signatures in
network traffic that leverages information on tainted data in the guest system. These tools are

18 Georgios Portokalidis and Herbert Bos, ‘SweetBait: Zero-Hour Worm Detection and Containment Using Low- and High-
interaction Honeypots’, available from [http://www.cs.vu.nl/~herbertb/papers/sweetbait_compnet2006_preprint.pdf]

http://www.few.vu.nl/argos/
http://www.few.vu.nl/argos/
http://www.few.vu.nl/argos/
http://www.few.vu.nl/argos/
http://www.few.vu.nl/argos/
http://www.few.vu.nl/argos/
http://www.few.vu.nl/argos/
http://www.few.vu.nl/argos/
http://www.few.vu.nl/argos/
http://www.few.vu.nl/argos/
http://www.few.vu.nl/argos/
http://www.few.vu.nl/argos/
http://www.cs.vu.nl/~herbertb/papers/sweetbait_compnet2006_preprint.pdf

49

Proactive Detection of Security Incidents

Honeypots

not publicly available or not advertised as ready for deployment in real world conditions –
therefore they were not evaluated in this study.

Evaluation
Detection scope: Multi-function
Argos is capable of detecting most types of exploits and may work as a server or client
honeypot.

Quality of collected data: Good
Taint analysis is an effective technique that allows Argos to precisely detect and block most
exploitation attempts. This detection method is very generic and does not depend on
signatures or behaviour patterns. Logs generated by Argos contain all tainted memory pages
and CPU context information at the moment of exploitation. Compared to a complete
memory dump, this information is very brief, yet it should suffice to reconstruct the attack.
Additionally, Argos provides an option to inject a ‘forensics shellcode’ instead of the attacker’s
one. Execution of shellcode in context of the attacked application provides an opportunity to
gather high-level information about the state of the system. However, it failed to run in the
test environment used in this evaluation. During testing, several false alarms were
encountered but it may be assumed that it is possible to eliminate most of them through the
white listing mechanism supported by the honeypot (default installation does not contain any
white lists). The main issue with results generated by Argos is their interpretation – additional
analysis is required in order to determine what actions were performed by the attacker and
which vulnerability was exploited. Without further processing, usefulness of produced logs is
limited.

Scalability and performance: Fair
Argos is based on QEMU and by design works only in emulation mode, i.e. KVM and other
virtualisation or acceleration techniques are not supported. According to a published
benchmark,19 it introduces approximately 25% overhead compared to vanilla QEMU and
2500% compared to applications running natively. The overhead may be less important for
server honeypots; however, even relatively simple client-side tasks like opening a web page
take a considerable amount of time. To some degree, low performance may be compensated
by running multiple instances of the honeypot in parallel – Argos simplifies this task through
automatic management of virtual network interfaces.

Reliability: Good
Argos prevents the system from being exploited and stops an attack just before the shellcode
is executed. Although it should be possible to keep the guest system running even after an
alert is raised, it is not possible in practice, since there can be times when a single exploit
causes Argos to report alarms constantly afterwards. Immediate shutdown and revert of the

19 Georgios Portokalidis, Asia Slowinska, Herbert Bos (2006), ‘Argos: an Emulator for Fingerprinting Zero-Day Attacks’,
available from [http://www.cs.vu.nl/~mconti/teaching/ATCNS2010/ATCS/SigGen/argos_eurosys06.pdf]

http://www.cs.vu.nl/~mconti/teaching/ATCNS2010/ATCS/SigGen/argos_eurosys06.pdf

50
Proactive Detection of Security Incidents

Honeypots

virtual machine is also required because each new alarm overwrites existing log files for the
instance, which could lead to data loss. Otherwise no problems with stability of the solution
were observed, even when the guest system was under heavy load.

Extensibility: Fair
Argos is available on open-source licences – mostly GPLv2 (QEMU source code) and 3-clause
BSD. Modification of the honeypot’s core may require familiarity with the x86 architecture,
internals of operating systems and QEMU source code. Moreover, there is no documentation
for developers and the source code itself does not contain many comments.

Ease of use and setting up: Fair
The software requires GCC version 3.x to compile, which is often not available on modern
systems. User documentation provides information on installation of the honeypot but does
not cover other topics like management, interpretation of results, etc. The official web page
links to several academic articles describing Argos and projects that were based on the data it
provides, that help to explain the detection method but provide little practical information.
Some tools that are referred to in the user’s guide are not present in released packages and
have to be downloaded from the Subversion repository. Some important configuration
options (e.g. white list syntax) are not documented. There is also very limited information
available about external utilities accompanying Argos. When Argos is running as a server
honeypot, the guest operating system does not require any special configuration or
installation of additional software.

Embeddability: Good
Argos saves its logs in a fixed binary format, well documented on the official web page. The
honeypot also provides a socket that can be used to control the virtual machine remotely, so
automated management should not be difficult to implement. It has already been successfully
integrated with SURFcert IDS (section 5.4.3).

Support: Fair
The last official release of the honeypot comes from May 2011. The project’s official
Subversion repository is active, with last commits dating from May 2012. However, all recent
changes seem to be focused in development branches, so it is unknown if and when new
features will be merged with the mainline. The official mailing list contains only few
unanswered posts, and there are no recent entries in the bug tracker. Apart from embedding
in bigger monitoring systems, the project apparently has not attracted a user community yet.
The current version of Argos is based on QEMU 0.9.1 (the newest version at the time of
release) and is continuously falling behind as QEMU receives regular updates (the current
version is 1.1.1).

Costs (Recommendations): Medium $$
While Argos is available on open-source licences, its deployment in a production environment
may require a substantial amount of effort. Configuration of the honeypot so that it works

51

Proactive Detection of Security Incidents

Honeypots

fully automatically is not trivial but should be possible using existing utilities. The biggest
challenge is effective processing of its output logs – while manual analysis is possible on a
case-by-case basis, it becomes unfeasible once the solution is deployed on a larger scale.
Hence, additional correlation and analysis techniques must be used – the Sweetbait system is
a good example of such an approach. Currently there is a lack of mature tools that could be
used with Argos for this purpose.

Recommendation on usefulness for CERTs: Useful

Argos provides very detailed information about attacks on real applications. One of its
important advantages is the capability of working as an advertised honeypot, which can
attract attacks not seen by traditional honeypot systems. It can also function as a client
honeypot. The biggest obstacle in successful deployment of the solution in the production
environment is lack of ability to utilise results that it produces – appropriate automated
analytical tools are not available yet. Nevertheless, CERTs willing to invest in research and
development will find this solution useful.

Figure 8: Argos in operation (screenshot)

52
Proactive Detection of Security Incidents

Honeypots

5.2.1.2 HiHAT
D

ET
EC

TI
O

N

SC
O

P
E

Q
U

A
LI

TY
 O

F
C

O
LL

E
CT

ED
 D

A
TA

SC
A

LA
B

IL
IT

Y
A

N
D

P

ER
FO

R
M

A
N

C
E

R
EL

IA
B

IL
IT

Y

EX
TE

N
SI

B
IL

IT
Y

EA
SE

 O
F

U
SE

A

N
D

 S
ET

TI
N

G
 U

P

EM
B

ED
D

A
B

IL
IT

Y

SU
P

P
O

R
T

C
O

ST

U
SE

FU
LN

ES
S

 F

O
R

 C
ER

T

SPEC $$$

Detection scope Rating Cost Usefulness for CERT

MULTI Multi-function Excellent $ Low Essential

 Good $$ Medium Useful

SPEC Specialised Fair $$$ High Not useful

 Poor

Version tested: 1.0

Date tested: July 2012

Testing time: 16 hours

Website: http://hihat.sourceforge.net/

The High Interaction Honeypot Analysis Toolkit (HiHAT) allows for transformation of a PHP-
based web application into a high-interaction honeypot. It provides a graphical user interface
that can be used for monitoring and analysis.

The transformation script adds logging capabilities to the web application. After that, i.e. after
inserting previously prepared code into source files, the honeypot can act as a fully functional
web application. It is able to log information such as source of connection and used module,
as well as values from HTTP headers.

HIHAT tries to automatically detect known attacks, such as SQL injection, file inclusion, cross-
site scripting, and command injection. It provides detailed information about the data
correlated with every access, including GET, POST and COOKIE headers. The honeypot
downloads and saves a copy of the malware used during the attack. It also provides numerous
statistics about traffic passing through the system.

Evaluation
Detection scope: Specialised
The honeypot is designed to detect attacks on PHP-based websites.

Quality of collected data: Excellent
HiHAT provides rich metadata, i.e. accessed resource, all HTTP headers, captured files, IP
geolocation, etc. It also provides additional information from external services, such as an RIR
database, and both regular and passive DNS. The range of metadata is not adjustable.

http://hihat.sourceforge.net/index.html
http://hihat.sourceforge.net/index.html
http://hihat.sourceforge.net/index.html
http://hihat.sourceforge.net/index.html
http://hihat.sourceforge.net/index.html
http://hihat.sourceforge.net/index.html
http://hihat.sourceforge.net/index.html
http://hihat.sourceforge.net/index.html

53

Proactive Detection of Security Incidents

Honeypots

The honeypot automatically classifies requests based on predefined signatures (keywords).
The list is small (less than 50 strings), but it is expandable. The tool provides extensive
statistics of all HTTP traffic, including attack data.

Scalability and performance: Excellent
HiHAT is implemented in the PHP programming language and run by a HTTP server, therefore
it can handle many simultaneous connections. The overhead of adding honeypot functionality
to the application is low. HiHAT is able to monitor several different web applications, which
can be deployed on different physical or virtual machines.

Reliability: Good
There were no issues observed during tests, but due to the fact that the honeypot modifies
original web applications’ source code, it might cause unexpected problems with more
complex applications. Since the honeypot is run by a HTTP server there is no additional
administrative workload.

Extensibility: Good
HiHAT is released under GPL.20 The transformation tool is written in the Java programming
language, and the logging capabilities added to the source application are written in PHP.
Source code is rather clean and commented. HiHAT supports modules for different web
applications, which contain specified white- and blacklists for filtering. Creation of a new
module is not documented, but there is a template provided.

Ease of use and setting up: Fair
Before a web application can be transformed into a honeypot it has to be configured. In
particular, a database connection has to be set up.

The installation process, i.e. transforming the existing web application into a honeypot by
injecting the logging code, is well documented, but it may require a significant amount of
work. The toolkit requires outdated versions of software, i.e. PHP interpreter and MySQL
server, to work properly, which makes installation complicated. HiHAT does have a web user
interface, which provides access to data collected by the web application honeypot. The
interface is easy to use. Configurability is rather limited, and moreover not all options can be
adjusted from the web interface.

Embeddability: Fair
HiHAT stores all the logged data in a MySQL database, therefore its results can be easily
accessed from other tools. The honeypot does not have a programming interface.

20 http://www.gnu.org/copyleft/gpl.html

http://www.gnu.org/copyleft/gpl.html

54
Proactive Detection of Security Incidents

Honeypots

Support: Poor
The honeypot is not being developed nor maintained. The last release was in 2007. There is
no active mailing list.

Costs: High $$$
The toolkit is freely available as Open Source. Installation of HiHAT requires a significant
amount of work: either installation of old versions of dependent software or modification of
its source code. Setting up the web application to work as a honeypot can be time consuming.
The tool is not maintained, therefore potential bugs will not be resolved.

Usefulness for CERTs: Useful
HiHAT provides valuable information on the attacks on websites; however, this comes at a
significant effort.

Figure 9: HiHAT in operation (screenshot)

55

Proactive Detection of Security Incidents

Honeypots

Figure 10: HiHAT in operation (screenshot)

5.2.1.3 HoneyBow

D
ET

EC
TI

O
N

SC

O
P

E

Q
U

A
LI

TY
 O

F
C

O
LL

E
CT

ED
 D

A
TA

SC
A

LA
B

IL
IT

Y
A

N
D

P

ER
FO

R
M

A
N

C
E

R
EL

IA
B

IL
IT

Y

EX
TE

N
SI

B
IL

IT
Y

EA
SE

 O
F

U
SE

A

N
D

 S
ET

TI
N

G
 U

P

EM
B

ED
D

A
B

IL
IT

Y

SU
P

P
O

R
T

C
O

ST

U
SE

FU
LN

ES
S

 F

O
R

 C
ER

T

MULTI $$

Detection scope Rating Cost Usefulness for CERT

MULTI Multi-function Excellent $ Low Essential

 Good $$ Medium Useful

SPEC Specialised Fair $$$ High Not useful

 Poor

Version tested: 0.1.0

Date tested: 26 July 2012

Testing time: 24 hours

Website: http://sourceforge.net/projects/honeybow/

HoneyBow is a toolkit consisting of three tools allowing for automated detection of malicious
files in the Windows operating system: MwWatcher, MwFetcher and MwSubmitter. The
MwWatcher is a user-space application allowing the user to monitor directories for changes
like creation of new files. This is often considered a malicious activity, especially in a honeypot
system. Samples caught by the software are then stored for later analysis in a special folder
on the honeypot disk. If the honeypot is a virtual machine, the disk image can be analysed for
changes by the MwFetcher tool. This tool requires preparation of an initial list of files for later
comparison, after the disk image is polluted by malware. Later it can detect modifications of
files in the disk image and extract them for analysis. The third tool, MwSubmitter, can transfer

http://sourceforge.net/projects/honeybow/files/honeybow/0.1.0/
http://sourceforge.net/projects/honeybow/files/honeybow/0.1.0/
http://sourceforge.net/projects/honeybow/files/honeybow/0.1.0/
http://sourceforge.net/projects/honeybow/files/honeybow/0.1.0/
http://sourceforge.net/projects/honeybow/files/honeybow/0.1.0/
http://sourceforge.net/projects/honeybow/files/honeybow/0.1.0/
http://sourceforge.net/projects/honeybow/files/honeybow/0.1.0/
http://sourceforge.net/projects/honeybow/files/honeybow/0.1.0/
http://sourceforge.net/projects/honeybow/files/honeybow/0.1.0/
http://sourceforge.net/projects/honeybow/files/honeybow/0.1.0/

56
Proactive Detection of Security Incidents

Honeypots

collected files to a central server. This can be useful especially when dealing with multiple
honeypots. The toolkit does not provide any analysis mechanisms, just collection methods.

Evaluation
Detection scope: Multi-function
HoneyBow can be used to build a honeypot detecting any kind of attack. It does not emulate
any service by itself, but can be used to automate malware collection.

Accuracy of emulation: Does not apply
The toolkit does not provide service emulation methods of any kind.

Quality of collected data: Poor
The toolkit only collects files from virtual machine disk images in case where the files were
modified during operation. This can lead to collecting non-malicious files (false positives) that
are created or modified during normal operation of Windows system.

Scalability and performance: Poor
The toolkit can be used to create a network of honeypots reporting to a central node. No
mechanisms for automation are provided with the honeypot, making creation of such
infrastructure rather difficult. Performance of the MwFetcher tool can be poor when scanning
large disk images.

Reliability: Poor
HoneyBow can be run only in manual mode. Users can create some automation scripts, but
the tool itself is not prepared for that.

Extensibility: Poor
The toolkit does not provide any kind of API. The source code of the tools is publicly available.
Modification of MwWatcher will require knowledge of Windows programming. Other tools
are written in the BASH scripting language but require external software to work properly.

Ease of use and setting up: Good
The MwWatcher and MwFetcher are relatively easy to set up and use manually. The
MwSubmitter requires another tool called MwCollector which is not a part of the HoneyBow
toolkit. Configuration options are limited but sufficient for creating individual and tailored
deployment.

Embeddability: Poor
HoneyBow does not provide any means to ease the process of integration with other systems.
All related work has to be done by the user.

Support: Poor
The development of the toolkit ceased in 2006. The only available means of contact with the
authors is by email. There seems to be almost no community interest in the project.

57

Proactive Detection of Security Incidents

Honeypots

58
Proactive Detection of Security Incidents

Honeypots

Costs: Medium $$
HoneyBow is freely available on the Internet. It comes with fairly straightforward
documentation but no support aside from that. Setting up a honeynet requires other tools
emulating vulnerable services, as the toolkit is just for collecting data from infected systems.

Usefulness for CERTs: Not useful
HoneyBow is outdated and not supported. It is recommended that other solutions be used for
performing similar tasks.

Figure 11: HoneyBow in operation (screenshot)

59

Proactive Detection of Security Incidents

Honeypots

5.2.1.4 Qebek

D
ET

EC
TI

O
N

SC

O
P

E

Q
U

A
LI

TY
 O

F
C

O
LL

E
CT

ED
 D

A
TA

SC
A

LA
B

IL
IT

Y
A

N
D

P

ER
FO

R
M

A
N

C
E

R
EL

IA
B

IL
IT

Y

EX
TE

N
SI

B
IL

IT
Y

EA
SE

 O
F

U
SE

A

N
D

 S
ET

TI
N

G
 U

P

EM
B

ED
D

A
B

IL
IT

Y

SU
P

P
O

R
T

C
O

ST

U
SE

FU
LN

ES
S

 F

O
R

 C
ER

T

MULTI $$

Detection scope Rating Cost Usefulness for CERT

MULTI Multi-function Excellent $ Low Essential

 Good $$ Medium Useful

SPEC Specialised Fair $$$ High Not useful

 Poor

Version tested: revision 66 from SVN repository

Date tested: 27 July 2012

Testing time: 4 hours

Website: https://projects.honeynet.org/sebek/wiki/Qebek

Qebek (QEMU-based Sebek) is a data capture tool based on QEMU emulation solution that
aims to replace Sebek (see section 5.2.1.5). Similar to Sebek, it observes syscalls in order to
gather information about all actions that an attacker performs in the monitored operating
system. All events captured by Qebek are reported in real time to standard output.

Instead of using a kernel module or other software installed inside the operating system,
Qebek leverages emulation technique to achieve invisibility. In principle, its presence should
be impossible to detect, although the emulation itself may be recognised by an attacker.
Currently the honeypot supports only Windows guests.

Evaluation
Detection scope: Multi-function
The honeypot monitors syscalls in the guest operating system. This technique allows it to
intercept interaction with an attacker regardless of application.

Quality of collected data: Fair
Qebek uses the same data format as Sebek – each observed syscall is reported along with its
timestamp, type, process information and additional payload. The honeypot does not offer
any means for interpreting output data and relies on Sebek server-side scripts for further
processing. There are no filtering mechanisms or any methods of customising the format of
data generated by the tool.

Scalability and performance: Poor
Qebek works only in emulation mode and does not support KVM (hardware-assisted
virtualisation). Due to substantial overhead added by emulation, a single graphical session

https://projects.honeynet.org/sebek/wiki/Qebek
https://projects.honeynet.org/sebek/wiki/Qebek
https://projects.honeynet.org/sebek/wiki/Qebek
https://projects.honeynet.org/sebek/wiki/Qebek
https://projects.honeynet.org/sebek/wiki/Qebek
https://projects.honeynet.org/sebek/wiki/Qebek
https://projects.honeynet.org/sebek/wiki/Qebek
https://projects.honeynet.org/sebek/wiki/Qebek
https://projects.honeynet.org/sebek/wiki/Qebek
https://projects.honeynet.org/sebek/wiki/Qebek
https://projects.honeynet.org/sebek/wiki/Qebek
https://projects.honeynet.org/sebek/wiki/Qebek
https://projects.honeynet.org/sebek/wiki/Qebek

60
Proactive Detection of Security Incidents

Honeypots

(e.g. RDP) causes performance problems with the guest system. It is possible to run several
Qebek instances on a single server, so horizontal scaling could be used to handle more traffic.
Qebek does not provide any facilities for aggregating data from multiple instances and, in
contrast to Sebek, does not send data over network; hence a custom solution would have to
be developed for that purpose.

Reliability: Poor
The solution can be considered a prototype, not ready for production use. Currently the only
supported guest system is Windows XP with Service Pack 2. There are no official releases yet,
so the source code has to be downloaded directly from a development Subversion branch.
Under certain conditions it is possible to receive data about interaction with an attacker but
even a simple usage scenario (connecting to a local shell from a remote address) can
repeatedly crash Qebek. Instability of the tool limited the number of tests that could be
performed for this evaluation.

Extensibility: Fair
Qebek is an extension of the popular QEMU emulator, with additional monitoring and
reporting capabilities added. The complete solution is available on open-source licences;
Qebek parts use mostly GPL version 2. Official documentation provides a brief description of
the honeypot’s architecture and contains limited information on extending its functionality.
Nevertheless, there is no API for extensions, and modifications to the Qebek core require
some level of understanding of operating system internals and possibly familiarity with the
QEMU source code.

Ease of use and setting up:
The software can be compiled and run on modern operating systems and does not have any
unusual dependencies. Exhaustive setup instructions are provided on the project’s website, so
even a person with no prior QEMU experience can successfully install the honeypot. The only
problem is that there are no binary Qebek packages for more convenient installation and
some installation steps in the documentation contain typos in shell scripts, so some level of
technical knowledge is required to correct them.

Embeddability: Good
A Qebek process produces a stream of messages in Sebek binary format on its standard
output. These messages can be processed easily using Sebek scripts or a custom parser. Due
to the almost complete lack of configuration options it is not possible to change either the
type of data gathered or its output format. There are no facilities for remote management;
however, it should not be difficult to develop scripts for automation of administrative tasks.

Support: Fair
The honeypot was developed as a part of Google Summer of Code 2010 and is hosted by the
Honeynet Project. Currently, the project does not show any signs of activity – last change in
the official Subversion repository dates back to June 2011. It should be possible to receive

61

Proactive Detection of Security Incidents

Honeypots

some level of support through the Honeynet Project21 (mailing lists or IRC). However, there
does not seem to be any user community for the tool. User documentation provided on the
website covers a basic usage scenario but should be sufficient, since configurability of the
honeypot is very limited.

Costs: Medium $$
Qebek is an open-source project, but it cannot be considered a mature solution at this point.
Hence, it is expected that its deployment and maintenance will take a considerable amount of
effort and time.

Usefulness for CERTs: Not useful
In its current state, Qebek is not reliable enough to be deployed in a production environment
and it has not yet achieved feature-parity with its predecessor – Sebek.

5.2.1.5 Sebek

D
ET

EC
TI

O
N

SC

O
P

E

Q
U

A
LI

TY
 O

F
C

O
LL

E
CT

ED
 D

A
TA

SC
A

LA
B

IL
IT

Y
A

N
D

P

ER
FO

R
M

A
N

C
E

R
EL

IA
B

IL
IT

Y

EX
TE

N
SI

B
IL

IT
Y

EA
SE

 O
F

U
SE

A

N
D

 S
ET

TI
N

G
 U

P

EM
B

ED
D

A
B

IL
IT

Y

SU
P

P
O

R
T

C
O

ST

U
SE

FU
LN

ES
S

 F

O
R

 C
ER

T

MULTI $$

Detection scope Rating Cost Usefulness for CERT

MULTI Multi-function Excellent $ Low Essential

 Good $$ Medium Useful

SPEC Specialised Fair $$$ High Not useful

 Poor

Version tested: 3.2.0b (binary version for Ubuntu 7.10)

Date tested: 26 July 2012

Testing time: 1 day with simulated load

Website: https://projects.honeynet.org/sebek/

Sebek is a data capture tool for monitoring activities of attackers in a real system, using client-
server architecture available for Linux and Windows. The client is in the form of a kernel
module that intercepts several important syscalls responsible for reading data, network
communication and process creation. Only the Linux version of the module was tested, but
since the Windows version uses similar monitoring mechanisms and gathers exactly the same
set of information, this evaluation should be applicable to both platforms.

21 https://www.honeynet.org

https://projects.honeynet.org/sebek/
https://projects.honeynet.org/sebek/
https://projects.honeynet.org/sebek/
https://projects.honeynet.org/sebek/
https://projects.honeynet.org/sebek/
https://projects.honeynet.org/sebek/
https://projects.honeynet.org/sebek/
https://projects.honeynet.org/sebek/
https://projects.honeynet.org/sebek/
https://projects.honeynet.org/sebek/
https://www.honeynet.org/

62
Proactive Detection of Security Incidents

Honeypots

The kernel module can monitor interaction between an attacker and a service running on the
honeypot on the application layer. If the attacker successfully exploits the service and
performs some file or network-related operations in the system (e.g. starts a shell) the
subsequent actions will also be logged. Sebek takes advantage of several evasion techniques
(used in kernel rootkits) in order to avoid detection by the attacker. Nevertheless, it is still
possible to discover its presence.

Gathered data is sent in real time to the server for analysis. The official documentation
recommends Honeywall gateway for this purpose. It is described in section 8.5.1, and this
Sebek evaluation does not cover features provided by Honeywall. Apart from Honeywall, a
collection of simple server-side tools is available but their capabilities are limited to the
extraction of Sebek data from network traffic without any further processing.

Since Sebek is designed only for observation, it does not attempt to block malicious actions.
There are also no facilities for restoring the operating system to the original state after
interaction with an attacker – they have to be implemented as external tools.

Evaluation
Detection scope: Multi-function
Sebek is able to monitor the behaviour of any application that is installed in the operating
system. The administrator creates a set of filtering rules that determine which processes
should be monitored and what types of events reported.

Quality of collected data: Fair

The kernel module reports low-level information associated with each intercepted syscall:
timestamp, operation type, PID, parent PID, executable name, and payload (usually data read
from a file descriptor). This data is sufficient to reconstruct the majority of actions performed
by an attacker. However, an external tool has to be used for that purpose (like the previously
mentioned Honeywall (see section 8.5.1)). Filtering rules allow for omission of irrelevant
syscalls that can be part of normal system operation and define what kind of behaviour should
be reported. There is neither automatic classification of events generated by the client nor
any facilities for collecting malware, but such features should not be difficult to implement as
external scripts that process gathered data.

Scalability and performance: Fair
It is possible to run multiple instances of Sebek in a single network; however, there are no
facilities that would distribute the incoming traffic among multiple systems. Since each syscall
generates an outgoing UDP packet to the server and there are no rate-limiting mechanisms in
the client, certain activity patterns may cause network congestion and potential data loss
(missed events). Overhead added by the monitoring process depends on the behaviour of
applications in the system – if no intercepted syscalls are called, performance will be
unaffected. However, I/O intensive workloads can be up to two orders of magnitude slower
than normal and generate a very large amount of events. For these reasons, the honeynet and
the server receiving Sebek data must have appropriate mechanisms, so that they do not

63

Proactive Detection of Security Incidents

Honeypots

become overloaded when the client floods them with packets. A single instance of the
honeypot can handle multiple simultaneous connections without problems.

Reliability: Fair
The official website of the project mentions problems with the reliability of Sebek on ‘current
operating systems’ (this information was added in 2009). During tests the honeypot was
operational even under heavy load, but Linux kernel repeatedly reported problems with the
module. It was also reported that the Windows client crashes the operating system. There
were also some unexpected crashes of user space applications, which could be related to bugs
in the kernel module. Overall, it is expected that the honeypot requires additional monitoring
in order to ensure that it is functioning properly.

Extensibility: Fair
Sebek is an open-source project – the Linux client is available on GPL version 2 and all other
components use 4-clause BSD licence. Server-side, the honeypot consists of a collection of
simple tools written in Perl and C, which are easy to understand and adapt. Client modules,
which are the most important part of the solution, may be much more difficult to modify since
they require some knowledge of kernel programming. There is no documentation for
developers or extension mechanisms of any kind.

Ease of use and setting up: Fair
The process of installation and configuration of Sebek clients is well documented. The official
website provides a complete installation tutorial and compiled binaries. Nevertheless, the
software is dated and the kernel module cannot be compiled with more recent Linux kernel
versions (e.g. 2.6.26), which might be a serious obstacle when creating a honeypot. Server-
side tools allow users to monitor deployed honeypots and display basic data, but there are no
facilities for centralised management of the whole system. Configuration of the kernel
modules in Linux is stored in simple text files and is easily comprehensible. The Windows
version offers a graphical configuration wizard that offers fewer options but may be easier to
use. Under Windows the configuration is stored in an obfuscated manner in order to avoid
detection and under Linux the configuration is not stored at all – the kernel module is not
loaded automatically on boot.

Embeddability:
The client module sends a stream of UDP packets in a simple, well-defined binary format. It
should not be difficult to create a piece of software that extracts Sebek data from network
traffic and processes it further. Existing tools can be used as a starting point. The solution does
not provide any means of remote management of client modules. Configuration of the Linux
component is passed in parameters of the kernel module and therefore is easy to handle
automatically. Automation might require more effort for the Windows version, since it stores
configuration in obfuscated registry keys and supports fewer options.

Support: Fair

64
Proactive Detection of Security Incidents

Honeypots

The project has not been in continuous development since 2010. Linux kernel module and
server-side tools have not been updated since 2009 and 2008, respectively. Sebek is hosted by
the Honeynet Project and it should be possible to receive some support using channels
offered by these organisation (mailing lists, IRC). Nevertheless, there are no signs of an active
Sebek user community. The honeypot is distributed with user documentation, which covers all
of the important issues.

Costs: Medium $$
Sebek is available on open-source licences, but depending on the usage scenario, its
deployment may require significant effort. If Sebek is used in conjunction with the existing
version of Honeywall (see section 8.5.1), no special tools for data processing have to be
developed and the overall cost could be kept low. In most other cases, software for
processing events and management of client modules would have to be created in order to
use the honeypot effectively.

Usefulness for CERTs: Not useful
While Sebek can provide some useful data, it is not being actively developed anymore and is
becoming obsolete (see also Qebek – section 5.2.1.4). Unless the Honeywall gateway is
already deployed in the organisation, the required maintenance and customisation effort
does not seem justified by the amount of information gathered by the tool. A more recent
and easier-to-manage solution should be considered instead.

65

Proactive Detection of Security Incidents

Honeypots

Figure 12: Sebek in operation (screenshot)

66
Proactive Detection of Security Incidents

Honeypots

5.2.1.6 Summary of high-interaction server-side honeypots

NAME D
ET

EC
T

IO
N

SC
O

P
E

Q
U

A
LI

TY
 O

F

C
O

LL
EC

TE
D

 D
A

T
A

SC
A

LA
B

IL
IT

Y
 A

N
D

P
ER

FO
R

M
A

N
C

E

R
EL

IA
B

IL
IT

Y

EX
TE

N
SI

B
IL

IT
Y

EA
SE

 O
F

U
SE

A
N

D
 S

E
TT

IN
G

 U
P

EM
B

E
D

D
A

B
IL

IT
Y

SU
P

P
O

R
T

C
O

ST

U
SE

FU
LN

E
SS

 F
O

R
 C

ER
T

Argos MULTI $$
HiHAT SPEC $$$
HoneyBow MULTI $$
Qebek MULTI $$
Sebek MULTI $$

Legend:

Detection scope Rating Cost Usefulness for CERT

MULTI Multi-function Excellent $ Low Essential

 Good $$ Medium Useful

SPEC Specialised Fair $$$ High Not useful

 Poor

67

Proactive Detection of Security Incidents

Honeypots

5.2.2 Low-interaction server-side honeypots

This section describes low-interaction server-side honeypots that were downloaded
and tested. A total of 18 honeypots were tested. They were additionally grouped into
subsections based on the taxonomy introduced in section 3.3.

5.2.2.1 General purpose honeypots

General purpose low-interaction honeypots can be used for emulating multiple
services. A total of 7 such honeypots were downloaded and tested.

5.2.2.1.1 Amun

Detection scope Rating Cost Usefulness for CERT

MULTI Multi-function Excellent $ Low Essential

 Good $$ Medium Useful

SPEC Specialised Fair $$$ High Not useful

 Poor

Version tested: 0.1.9

Date tested: April 2012

Testing time: 3 days

Website: http://amunhoney.sourceforge.net/

Amun is a low-interaction honeypot written in Python and available on GNU GPL licence. The
main goal of Amun is to acquire malware by emulation of specific vulnerabilities and analysis
of exploits. Specific vulnerabilities (rather than fully functional services) are emulated fairly
accurately. Amun has a modular architecture.

D
ET

EC
T

IO
N

SC

O
P

E

A
C

C
U

R
A

C
Y

O
F

EM
U

LA
TI

O
N

Q
U

A
LI

TY

O
F

C
O

LL
EC

TE
D

 D
A

T
A

SC
A

LA
B

IL
IT

Y
A

N
D

P

ER
FO

R
M

A
N

C
E

R
EL

IA
B

IL
IT

Y

EX
TE

N
SI

B
IL

IT
Y

EA
SE

O

F
U

SE

A
N

D
 S

E
TT

IN
G

 U
P

EM
B

E
D

D
A

B
IL

IT
Y

SU
P

P
O

R
T

C
O

ST

U
SE

FU
LN

E
SS

 F
O

R
 C

ER
T

MULTI $

http://amunhoney.sourceforge.net/
http://amunhoney.sourceforge.net/
http://amunhoney.sourceforge.net/
http://amunhoney.sourceforge.net/
http://amunhoney.sourceforge.net/
http://amunhoney.sourceforge.net/
http://amunhoney.sourceforge.net/
http://amunhoney.sourceforge.net/

68
Proactive Detection of Security Incidents

Honeypots

Figure 13: Amun in operation (screenshot)

Evaluation
Detection scope: Multi-function
Individual services and their vulnerabilities are handled by different vulnerability modules in
Amun. Each module corresponds to a specific vulnerability or functionality of a service.
Therefore, several modules can be connected to one service. The tool is distributed with 46
modules.

Accuracy of emulation: Fair
By design, each service is emulated to a level required to handle a given exploit and download
malware, or to detect an attack at a given application (e.g. phpMyAdmin). This means that the
modules are not capable of detecting 0-day attacks, because they expect a certain sequence
of interaction. An attack that exploits an unknown vulnerability will most likely follow a
different scenario, incompatible with the module. General level emulation of services (not
tied to a specific vulnerability or functionality) is very basic. However, emulation of specific
vulnerabilities is more than satisfactory. Amun supports both TCP and UDP protocols, but

69

Proactive Detection of Security Incidents

Honeypots

handling of UDP is limited and not configurable (at least not without modifying the source
code). Data is sent to a shellcode analyser, but no further interaction is possible.

Quality of collected data: Good
In addition to raw data (hexdump of all binary data acquired during interaction), and basic
information like timestamps, IP addresses and ports of connections, Amun also generates
some metadata. Depending on emulated services and level of interaction, those can be HTTP
headers, content of various protocol-specific fields (e.g. NetBIOS), exploit details (vulnerability
used, shellcode payload), results of shellcode analysis (including instructions to run, URL
address to download malware), md5 sums of downloaded files, etc. Metadata are useful and
reasonably easy to process. Additionally, a simple classification is provided in the form of
information about exploited vulnerability (when no vulnerability is matched by a module, the
result is ‘unknown vuln’). Description of the specific vulnerability ensures that the connection
was indeed malicious. Downloaded binary files can be forwarded to external services
specialising in malware analysis (Anubis is supported, among others). The tool writes results
to several files, depending on type of information recorded. Different directories are used for
hexdumps and malware files.

Scalability and performance: Good
A single installation of the Amun honeypot can handle over 100 IP addresses. Multiple
instances can run concurrently on one server, unless prevented by their configurations (only
one instance may listen on a given port). No negative performance issues were observed.

Reliability: Excellent
Amun did not hang nor terminate unexpectedly during tests. Slight glitches in the modules did
not impact stability of the whole tool. No problems with handling of multiple connections with
a single module were observed during stress tests.

Extensibility: Excellent
Amun has a modular architecture. The task of the main component, Amun Kernel, is to listen
on a number of selected ports and handle incoming connections, while interaction with the
attacker is provided by modules. The tool is distributed with 46 basic modules. All modules,
just as the whole honeypot, are written in Python. Authors have provided a way to create new
modules in XML, which can be converted to a Python script with a special tool. This way, no
knowledge of Python programming is required in order to extend Amun’s functionality.
Specifics of module creation are well described in the documentation as well as various
conference proceedings by the honeypot’s authors. On top of that, any programmer with
knowledge of Python is able to easily modify the honeypot as well as its individual
components.

Ease of use and setting up: Good
All it takes to use the honeypot is running the main Python script. There is no need to install
any binary files except the Python environment as a prerequisite. All parameters of the

70
Proactive Detection of Security Incidents

Honeypots

honeypot’s behaviour are configurable from one configuration file in a text format. There is
no need to restart after a parameter has been modified as the configuration is periodically
read by the honeypot. Amun logs its activities, as well as details of intercepted attacks and
results of analysis. Vast possibilities of logging are offered – logs can be written to dedicated
files, syslog or MySQL database. There is also a dedicated component for email reporting and
pushing data to SurfIDS – now called SURFcert IDS (see section 5.4.3). Unfortunately, no
interactive user interface is provided. There is also no built-in tool for generating statistics.
Documentation is poor, but there is a lot of useful information in various articles by the
honeypot’s author.

Embeddability: Good
Amun does not provide mechanisms for two-way communication – it is only possible to pull
information registered by the honeypot. This can be done by reading from log files (easy to
parse) or querying a MySQL database. Additional components send data over email and to
SurfIDS/SURFcert IDS. It is easy to automate maintenance and configuration (simple
modifications in text files) and it can be done with simple shell scripts (sh, bash, etc.).
Automation is further facilitated by the fact that no restart is required to enable configuration
changes – the configuration file is re-read periodically.

Support: Poor
The Amun project seems to be inactive.22 The last version (0.1.9) was issued in 2010.
However, last updates to the SVN repository were done in early 2011. In the official bug
reporting system there are unresolved issues from 2009. The user forum is inactive. There
does not seem to be any active community.

Costs: Low $
Overall costs of implementation are low. The tool has open-source code on GNU GPL licence.
The remaining evaluation components match criteria for a low cost grade. Lack of support and
development of the project may be problematic and cause additional maintenance costs
(especially from bug fixing).

Usefulness for CERT: Useful
Amun can provide interesting information relevant for a CERT. This tool is recommended for
beginners in honeypot technology due to its universal scope, ease of use and excellent
reliability. However, due to its imperfect accuracy of emulation and abandonment of the
project, CERTs should consider using another solution.

22 The project web page was updated in late August 2012 with a statement that software is still being maintained, even
though there were no major updates. This may warrant a higher rating for Support in the future.

71

Proactive Detection of Security Incidents

Honeypots

5.2.2.1.2 Dionaea

Detection scope Rating Cost Usefulness for CERT

MULTI Multi-function Excellent $ Low Essential

 Good $$ Medium Useful

SPEC Specialised Fair $$$ High Not useful

 Poor

Version tested: 0.1.0

Date tested: May 2012

Testing time: 16 hours

Website: http://dionaea.carnivore.it/

Dionaea, the Nepenthes successor, is a low-interaction honeypot, whose main purpose is
collecting malware. It features modular architecture, embedding Python as scripting language
in order to emulate protocols. It is able to detect shellcodes using libemu and supports IPv6
and TLS. Dionaea runs in a restricted environment without administrative privileges.

Evaluation
Detection scope: Multi-function
Protocols in Dionaea are implemented as modules; several ready-to-use ones are provided
with the software, implementing the most popular protocols. Thanks to its modular
architecture it is possible to emulate any protocol in Dionaea.

Accuracy of emulation: Good
Great emphasis is put on accurate implementation of the SMB protocol, which is commonly
used by Internet worms and botnets to infect end user machines. Besides regular interaction
using SMB protocol, it is possible to access SMB shares. Another advanced module is SIP
(VoIP) honeypot, which is able to establish SIP sessions. The rest of the supplied modules
provide basic functionality, which in most cases is sufficient to collect malware.

Dionaea uses libemu, which can detect shellcode using emulation. It has the capacity to
detect unknown shellcode automatically, without any interaction.

It is possible to identify the honeypot based on hardcoded strings, such as fields in SSL
certificate or NetBIOS name.

Quality of collected data: Excellent
The main honeypot objective is to save malware used by the attacker.

D
ET

EC
TI

O
N

SC
O

P
E

A
C

C
U

R
A

C
Y

O
F

EM
U

LA
TI

O
N

Q
U

A
LI

TY
 O

F
C

O
LL

EC
TE

D
 D

A
TA

SC
A

LA
B

IL
IT

Y
A

N
D

P

ER
FO

R
M

A
N

C
E

R
EL

IA
B

IL
IT

Y

EX
TE

N
SI

B
IL

IT
Y

EA
SE

 O
F

U
SE

A
N

D
 S

ET
TI

N
G

 U
P

EM
B

ED
D

A
B

IL
IT

Y

SU
P

P
O

R
T

C
O

ST

U
SE

FU
LN

ES
S

 F

O
R

 C
ER

T

MULTI $

http://dionaea.carnivore.it/
http://dionaea.carnivore.it/
http://dionaea.carnivore.it/
http://dionaea.carnivore.it/
http://dionaea.carnivore.it/
http://dionaea.carnivore.it/
http://dionaea.carnivore.it/
http://dionaea.carnivore.it/

72
Proactive Detection of Security Incidents

Honeypots

Besides the malware binary file a session log is stored. This includes information about each
event: connection parameters, source of the incident and its properties. The honeypot can
use external tools in order to enrich information about the incident, e.g. attacker's operating
system identification (using p0f) or IP address geolocation. It is also possible to submit files for
external analysis to third party services, such as VirusTotal.23

Scalability and performance: Good
Dionaea is able to listen on many network interfaces and many IP addresses simultaneously.

All network I/O is implemented in a non-blocking manner, which allows the tool to accept
many connections at once. It is also possible to apply rate limiting and accounting limits per
connection.

Reliability: Excellent
Dionaea is stable even during long running periods. Some modules, especially experimental
ones, can cause unexpected actions, such as exceptions when parsing data. Besides these
minor issues, there are no signs of any problems that may occur at a later time.

Extensibility: Excellent
The honeypot has a modular architecture, which allows one to create custom extensions.
Source code is open, clean and partially documented. Dionaea’s core is coded in C and the
modules are Python scripts. The project has a good and detailed documentation.

Ease of use and setting up: Good
Installation may seem complicated, but it is well documented and comes down to
reproduction of particular steps. Most dependencies are available as software packages in
popular GNU/Linux distributions. Dionaea itself is available as a ready-to-install package for
some operating systems.

Configuration is located in one place, and file format is clean and well documented. One can
configure many aspects of the honeypot and each of its modules. The honeypot logs detailed
information about discovered threats. It can store logs in both text files and a database. It is
possible to set logging facilities and levels. Scripts supplied with the honeypot help facilitate
processing of incident data or creating charts. There is also a web-based graphical user
interface available called carniwwwhore (see section Error! Reference source not found.). It
equires use of a PostgreSQL database to store incident data.

Embeddability: Excellent
All information kept in internal structures is saved to an SQLite database. With modules, it is
possible to save data in another format. Dionaea also supports logging to XMPP services. The

23 https://www.virustotal.com/

https://www.virustotal.com/

73

Proactive Detection of Security Incidents

Honeypots

honeypot can send downloaded malware and shellcode to external sites (including one’s own
server).

Support: Excellent
The Dionaea project is actively developed; there is a mailing list available as well as
community support.

Costs: Low $
The honeypot is able to emulate multiple protocols; it can be extended or modified.
Integration with external services is easy to implement. In addition, Dionaea has an open
licence and good support from the community.

Usefulness for CERT: Essential
Due to its functionality and adaptability, Dionaea can be considered an essential source of
incident data for every CERT.

Figure 14: Dionaea in operation (screenshot)

5.2.2.1.3 KFsensor

Detection scope Rating Cost Usefulness for CERT

MULTI Multi-function Excellent $ Low Essential

 Good $$ Medium Useful

SPEC Specialised Fair $$$ High Not useful

 Poor

Version tested: 4.7.0 (trial version)

D
ET

EC
T

IO
N

SC
O

P
E

A
C

C
U

R
A

C
Y

O
F

EM
U

LA
TI

O
N

Q
U

A
LI

TY
 O

F

C
O

LL
EC

TE
D

 D
A

T
A

SC
A

LA
B

IL
IT

Y
 A

N
D

P

ER
FO

R
M

A
N

C
E

R
EL

IA
B

IL
IT

Y

EX
TE

N
SI

B
IL

IT
Y

EA
SE

 O
F

U
SE

A
N

D
 S

E
TT

IN
G

 U
P

EM
B

E
D

D
A

B
IL

IT
Y

SU
P

P
O

R
T

C
O

ST

U
SE

FU
LN

E
SS

 F
O

R
 C

ER
T

MULTI $$

74
Proactive Detection of Security Incidents

Honeypots

Date tested: 23 May 2012

Testing time: 48 hours

Website: http://keyfocus.net/kfsensor/

KFSensor is a low-interaction honeypot designed to emulate a wide range of services. It works
only on Windows operating system. The software is distributed commercially by a company
called KeyFocus Ltd but a trial version is available. Deployment and configuration is easy and
straightforward. The honeypot is equipped with a graphical management interface allowing
easy reconfiguration and observation of logged attacks. We decided to test the honeypot due
to the fact that, unlike the other low-interaction solutions, it is Windows based.

Figure 15: KFsensor in operation (screenshot)

Evaluation
Detection scope: Multi-function
KFSensor honeypot is able to monitor attacks on every TCP and UDP port as well as ICMP
traffic.

Accuracy of emulation: Fair
The honeypot delivers various levels of accuracy in emulation depth depending on the
emulated service. It supports a fair level of emulation for some of the most popular services,
allowing even some interaction beyond just making a connection. Most of the services are
only simulated by either opening a port and waiting for incoming connections or providing
basic interaction by sending a protocol banner.

75

Proactive Detection of Security Incidents

Honeypots

Quality of collected data: Good
The KFSensor honeypot provides information about observed events. Aside from saving raw
data information about the traffic to monitored ports, it saves additional information in text-
based log files containing pre-processed information about the type of the observed event,
protocol, name of affected service, etc. Saved meta-information is extensive enough to
determine the severity of attack and provide insight into the scope of the attack.

The honeypot is prone to false positive classifications because it generates an alert for every
observed event. Fortunately the user is able to reassign priorities to specific alerts (events
logged on TCP/UDP port), potentially lowering the false-positive rate.

Scalability and performance: Excellent
KFSensor can be deployed in a honeynet environment. Only one instance of the honeypot is
allowed on one machine, but many instances can log events into one common repository, e.g.
database or syslog server. The honeypot can sustain hundreds of simultaneous connections
without noticeable loss in performance.

Reliability: Excellent
The honeypot did not produce malformed data; nor did it lose any data during stress tests.
Furthermore it behaved in a stable manner during the entire testing procedure and was able
to handle multiple concurrent connections without any problems. The tool did not need any
supervision from the operator during tests and problems with using it over an extended
period of time are not expected to occur.

Extensibility: Good
The tool can be extended with additional functionality by writing custom scripts simulating a
service. The scripts can be written in Perl, for example. Extensive documentation provides
good examples on how to create a custom plugins.

Ease of use and setting up: Excellent
KFSensor can be installed only on Windows but is extremely easy to set up and use. It has few
dependencies and is able to run after installation and a few simple configuration steps in
which aid is provided by the configuration wizard. The user documentation is extensive,
providing examples of configuration and typical use. The honeypot has a graphical user
interface allowing easy reconfiguration and monitoring of incidents. Furthermore, the
information about the status of the honeypot is logged in a human-readable format in text
files.

Embeddability: Good
The honeypot can be easily integrated with other systems via its feature to log information
about incidents to a database and syslog server. Moreover, it stores information about
incidents in an XML file, which can be easily parsed by a custom solution. The honeypot

76
Proactive Detection of Security Incidents

Honeypots

installs itself as a Windows service and each reconfiguration requires a restart of its process,
but it is easily accomplished via the GUI.

Support: Good
The last version of KFSensor was released in March 2010. The honeypot seems not to have
been developed since then. The honeypot is a commercial solution, therefore support is
available only after purchasing a licence. Extensive documentation and other sources available
on the company’s website provide sufficient information for solving most of the problems
encountered when using the honeypot.

Costs: Medium $$
KFSensor is licensed commercially. Its price depends on the use and feature set the user wants
the honeypot to support. Enterprise licensing requires making an official price quote to the
KeyFocus company.

Usefulness for CERTs: Useful
KFSensor can be useful for CERTs whose base infrastructure relies mostly on Windows
machines and services run in the constituency network are Windows-based deployments.

5.2.2.1.4 Honeyd

D
ET

EC
T

IO
N

SC
O

P
E

A
C

C
U

R
A

C
Y

O
F

EM
U

LA
TI

O
N

Q
U

A
LI

TY
 O

F
C

O
LL

EC
TE

D
 D

A
T

A

SC
A

LA
B

IL
IT

Y
 A

N
D

P
ER

FO
R

M
A

N
C

E

R
EL

IA
B

IL
IT

Y

EX
TE

N
SI

B
IL

IT
Y

EA
SE

 O
F

U
SE

A
N

D
 S

E
TT

IN
G

 U
P

EM
B

E
D

D
A

B
IL

IT
Y

SU
P

P
O

R
T

C
O

ST

U
SE

FU
LN

E
SS

 F
O

R
 C

ER
T

MULTI $

Detection scope Rating Cost Usefulness for CERT

MULTI Multi-function Excellent $ Low Essential

 Good $$ Medium Useful

SPEC Specialised Fair $$$ High Not useful

 Poor

Version tested: 1.5c

Date tested: April 2012

Testing time: 38 hours

Website: http://www.honeyd.org/

Honeyd is a low-interaction honeypot. Honeyd creates virtual hosts associated with defined IP
addresses. On those virtual hosts single services can be simulated, as well as entire operating
systems. The tool is able to simulate both single hosts and networks (along with network
devices).

http://www.honeyd.org/
http://www.honeyd.org/
http://www.honeyd.org/
http://www.honeyd.org/
http://www.honeyd.org/
http://www.honeyd.org/
http://www.honeyd.org/
http://www.honeyd.org/

77

Proactive Detection of Security Incidents

Honeypots

Honeyd operates in an IP network and supports TCP, UDP, and ICMP protocols. Its goal is to
collect information on incoming connections (potential attacks). The tool is not designed to
collect malware.

The honeypot’s configuration sets up behaviour patterns (what service should be simulated
and how) and assigns each IP address to one of these patterns.

Interaction with an attacker is done by executing the appropriate scripts, which are designed
to emulate the service. There is a set of scripts provided by the developers. It is also possible
to write custom scripts or use one supplied by third parties. Therefore, Honeyd can be
described as a framework, which gains full honeypot functionality only when used along with
independently available scripts.

Honeyd is open-source software distributed under the GNU GPL. Since the latest version was
released in 2007, the project can be considered as obsolete. However, given the tool’s generic
nature, it does not mean that this is necessarily a problem and that it is not useful.

Evaluation
Detection scope: Multi-function
Honeyd is able to emulate any service using either TCP or UDP protocol. These services can be
emulated simultaneously.

Accuracy of emulation: Fair
There are scripts emulating common services provided along with the tool. It is possible to
interact with an attacker making the connection. Depending on the type of service, it may be
more or less advanced, but it nevertheless remains elementary. For the rest of the services,
which are not covered by scripts, Honeyd opens a TCP port and accepts a potential
connection. It is worth mentioning that there is a set of scripts created by the user
community.

Moreover, it can be used with third party software, such as nepenthes (see section 5.2.2.1.6)
or dionaea (see section 5.2.2.1.2). Taking into account this cooperation, the evaluation of
Honeyd could be greatly increased.

Quality of collected data: Poor
Honeyd logs only basic information such as timestamp, source and destination IP, protocol
used (TCP/UDP/ICMP, TCP control bits are also stored), source and destination ports. If the
tool manages to fingerprint an attacker’s operating system, this information will be logged as
well. This is the only metadata provided. It is acquired from a database of an external tool, i.e.
p0f.24 Since the tool does not identify exploits, it is more prone to false positives.

Since the tool is a framework, the need for detailed logging and analysis has been passed on
to the scripts (plugins) that handle the connection.

24 http://lcamtuf.coredump.cx/p0f3/

http://lcamtuf.coredump.cx/p0f3/

78
Proactive Detection of Security Incidents

Honeypots

79

Proactive Detection of Security Incidents

Honeypots

Scalability and performance: Excellent
Honeyd with its default configuration can handle 100 public, unused and unprotected IP
addresses easily. However, it is usually used as a framework in which the actual interaction in
the application layer is provided by additional scripts. In that case, performance depends
primarily on the tools which handle the connections.

No performance problems were encountered when Honeyd was running with the most
popular extensions, like those provided with the tool, as well as with Nepenthes running as a
sub-process.

Reliability: Excellent
The tool with its basic set of scripts does not cause any problems even during a long running
period. In addition, any issues caused by external scripts should not lead to a general Honeyd
malfunction. The honeypot requires very little administrative supervision.

Extensibility: Excellent
Honeyd has a modular architecture. It was designed as a framework and uses a plugin system
in the form of scripts or programs that emulate particular services. These can be written in
popular programming languages, such as Perl, Python or bash. Since the tool itself is written in
C programming language there should not be much difficulty modifying its code.

Ease of use and setting up: Good
Installation requires basic technical knowledge, but it is not difficult. Honeyd is available as a
software package for a Debian GNU/Linux (deb) as well as source code distribution.

Good documentation is available, along with examples and tutorials supplied by the user
community. Honeyd configuration is located in a single text file, which is clean and relatively
easy to understand. Modification of any parameters does not require a change in the source
code. However, some knowledge of how networks are built is required to configure the tool
to emulate a network properly.

Honeypot does not have any built-in user interface. Information regarding established
connections can be obtained from log files. There are also no built-in tools designed to
generate statistics or reports. However there are external tools for that purposes (see section
8.3).

Embeddability: Fair
Honeyd does not have any interface to communicate with other tools to either exchange or
share data. In order to obtain information from the honeypot one has to utilise its logs. Logs
are in syslog format, therefore they are straightforward to parse. Automation of both the
installation process and usage is simple and can be achieved through shell scripts.

80
Proactive Detection of Security Incidents

Honeypots

Support: Poor
The Honeyd project appears to be inactive. The latest version (1.5c) was released in 2007, but
latest changes in the source code (patches) were committed to the repository in December
2008.

Although Honeyd works reliably, there are issues reported. Unfortunately, Honeyd does not
have an active developer support. There is a user community, but this does not encompass
tool development.

Costs: Low $
The overall cost of using Honeyd is low. It has an open-source code under the GNU GPL.
Scalability, reliability and extensibility were considered excellent. Only the integration requires
an additional workload.

Usefulness for CERTs: Useful
Due to a wide range of Honeyd framework possibilities, extensibility in particular, it appears to
be useful in everyday CERT work. Honeyd can be used not only for connection handling and
emulation scripts management, but also to simulate complex network topologies.

Figure 16: Honeyd in operation (screenshot)

81

Proactive Detection of Security Incidents

Honeypots

5.2.2.1.5 Honeytrap

D
ET

EC
T

IO
N

SC
O

P
E

A
C

C
U

R
A

C
Y

O
F

EM
U

LA
TI

O
N

Q
U

A
LI

TY
 O

F
C

O
LL

EC
TE

D
 D

A
T

A

SC
A

LA
B

IL
IT

Y
 A

N
D

P

ER
FO

R
M

A
N

C
E

R
EL

IA
B

IL
IT

Y

EX
TE

N
SI

B
IL

IT
Y

EA
SE

 O
F

U
SE

A

N
D

 S
E

TT
IN

G
 U

P

EM
B

E
D

D
A

B
IL

IT
Y

SU
P

P
O

R
T

C
O

ST

U
SE

FU
LN

E
SS

 F
O

R
 C

ER
T

MULTI $$

Detection scope Rating Cost Usefulness for CERT

MULTI Multi-function Excellent $ Low Essential

 Good $$ Medium Useful

SPEC Specialised Fair $$$ High Not useful

 Poor

Version tested: 1.1.0 (SVN)

Date tested: 9 May 2012

Testing time: 24 hours

Website: http://honeytrap.carnivore.it

Honeytrap is a low-interaction honeypot which aims at capturing malicious code used by the
attackers in the first phase of an exploitation process. The honeypot can be used to discover
previously unknown types of attacks, so called 0-day exploits. Honeytrap analyses whole
traffic directed to the machine and if it matches one of the monitored services, the traffic is
processed by one of the software modules delivered with the honeypot. Data gathered from
the session between an attacker and the honeypot is saved in a separate file for later analysis.
The honeypot is able to emulate only some of the services by responding with predefined
data on the service port – it does not implement or simulate protocols. Nevertheless, even
simply responding with predefined data is often enough to catch exploits served by the
attackers.

The development of this honeypot seems to be halted but it is still possible to post bug
reports and feature requests via a mailing list. Honeytrap is licensed under GPLv2. The
evaluation was based on an SVN version downloaded on 9 May 2012.

Evaluation

Detection scope: Multi-function
Honeytrap can emulate any service in a very simple manner.

Accuracy of emulation: Fair
The honeypot allows a simple emulation of any service. The emulation is limited to just
presenting a service banner. It is not possible to create a configuration allowing a deeper level
of communication between attacker and honeypot. It is possible though, to configure the
honeypot in a proxy mode in which it can forward and monitor communication between an
attacker and a real service or a high-interaction honeypot.

82
Proactive Detection of Security Incidents

Honeypots

Another configuration allows for the configuration of the honeypot to work in a mirror mode
for some of the monitored services. In this mode the honeypot mirrors the connection back to
the attacker with the same destination port as the attacked one.

Quality of collected data: Fair
Data acquisition is limited to a simple dump of traffic between attacker and the honeypot. The
project documentation mentions the possibility of analysing data gathered with ClamAV
antivirus or libemu to find shellcodes, but modules responsible for performing the tasks are
marked as in development and unstable. Using these modules extends the functionality of the
honeypot, providing it with classification capabilities. The correctness of classification
depends solely on the external modules and its evaluation is beyond the scope of this
document.

Scalability and performance: Excellent
The honeytrap honeypot can handle high load without any noticeable decrease in
performance. Honeypot has built-in load-balancing capabilities – for each emulated service a
new instance of the honeypot is spawned to handle incoming traffic.

Reliability: Good
During the evaluation process the honeypot remained stable. Only when using some of the
modules marked as unstable was the data partially lost. Nevertheless the main process of the
honeypot remained undisturbed and it handled incoming requests without problems.

Extensibility: Good
Honeytrap’s architecture is modular and can be extended with specialised plugins.
Development of new plugins can pose some difficulties because the honeypot was written in
C and the code is poorly documented.

Ease of use and setting up: Fair
The honeypot is delivered with limited user documentation but all necessary configuration
options are well described in configuration files and man page. Installation of the honeypot
can be difficult and requires advanced knowledge of the Linux operating system and methods
of code compilation. Honeytrap is not equipped with any kind of GUI or other monitoring
interface. The only option is to follow log file entries to determine the state of the honeypot.
All configuration options are gathered in one configuration file.

Embeddability: Poor
The integration of honeytrap with other systems is difficult and requires creating a custom
parser for gathered data. There is a possibility to create a custom export plugin but it may be
difficult because of limited available documentation.

Support: Fair
The honeypot seems not to be developed anymore. The support channels consist of the email
of the project creator or mailing list. Activity on the mailing list seems to be low.

83

Proactive Detection of Security Incidents

Honeypots

Costs: Medium $$
Honeytrap is licensed under GPLv2. Limited documentation may be a factor that increases
overall costs of deployment, especially in terms of time required to get a grasp of honeypot’s
functionality.

Usefulness for CERTs: Useful
Honeytrap can be useful as one of a CERT’s systems for data acquisition, especially as a meta-
honeypot redirecting and monitoring traffic to more sophisticated honeypots.

Figure 17: Honeytrap in operation (screenshot)

84
Proactive Detection of Security Incidents

Honeypots

5.2.2.1.6 nepenthes
D

ET
EC

T
IO

N

SC
O

P
E

A
C

C
U

R
A

C
Y

O
F

EM
U

LA
TI

O
N

Q
U

A
LI

TY
 O

F

C
O

LL
EC

TE
D

 D
A

T
A

SC
A

LA
B

IL
IT

Y
 A

N
D

P

ER
FO

R
M

A
N

C
E

R
EL

IA
B

IL
IT

Y

EX
TE

N
SI

B
IL

IT
Y

EA
SE

 O
F

U
SE

A
N

D
 S

E
TT

IN
G

 U
P

EM
B

E
D

D
A

B
IL

IT
Y

SU
P

P
O

R
T

C
O

ST

U
SE

FU
LN

E
SS

 F
O

R
 C

ER
T

MULTI $$

Detection scope Rating Cost Usefulness for CERT

MULTI Multi-function Excellent $ Low Essential

 Good $$ Medium Useful

SPEC Specialised Fair $$$ High Not useful

 Poor

Version tested: 0.2.2

Date tested: April 2012

Testing time: 31 hours

Nepenthes is a low-interaction honeypot. It was created for the purpose of collecting
malicious self-propagating code spreading on the Internet. Nepenthes runs in a passive mode,
waiting for incoming connections. It emulates known vulnerabilities and attempts to collect
malware that exploits them. Nepenthes is designed in a modular way, which allows for various
interactions with different threats. The modules include the following:

 asynchronous DNS resolution,
 vulnerability emulation,
 file downloads,
 transfer of acquired files,
 event trigger,
 shellcode handling.

Evaluation
Detection scope: Multi-function
The honeypot is packaged with a number of modules emulating vulnerabilities in a range of
services. Custom modules may be created and integrated.

Accuracy of emulation: Fair
Nepenthes emulates specific vulnerabilities rather than services. Nepenthes does not
implement the SMB protocol, therefore it is impossible to establish a valid session, which is
needed by certain exploits in order to send a payload. The honeypot uses pattern matching
for shellcode detection, which works only when there is a previously provided pattern for the
shellcode. Nepenthes does not support TLS nor IPv6.

Quality of collected data: Fair

85

Proactive Detection of Security Incidents

Honeypots

Nepenthes can record complete sessions (in hexadecimal dumps) as well as captured binary
files. The collected files may be automatically pushed to external services for analysis.

Scalability and performance: Good
An external tool, such as Honeyd (see section 5.2.2.1.4), is required to handle multiple
incoming connections. Many concurrent instances of the honeypot may run on a single server
without problems.

Reliability: Excellent
Reliability may depend on the choice of modules. However, with the default set of modules,
the tool runs without any glitches, even during long usage periods.

Extensibility: Excellent
Nepenthes supports extensions in the form of modules for vulnerability emulation,
downloading and transfer of files, shellcode detection, DNS resolution and geolocation. The
software is distributed with documented sample modules. Custom modules can easily be
created on these samples. The source is open and based on popular libraries. However,
extension requires knowledge of C++, which may be a barrier.

Ease of use and setting up: Good
The installation process is straightforward and well documented. There are installation
packages available for a number of popular operating systems. The whole honeypot as well as
specific modules can be configured individually, with the complete configuration file stored in
one place.

Embeddability: Fair
Custom modules can be created for exchange of information with other systems.

Support: Poor
The nepenthes project is obsolete and no longer maintained or supported. The authors
encourage users to switch to a successor project – Dionaea (see section 5.2.2.1.2).

Costs: Medium $$
Overall implementation costs are low, but the maintenance cost can be high, because the tool
is no longer supported.

Usefulness for CERTs: Not useful
Nepenthes is rendered obsolete by Dionaea, therefore it is not recommended for use in new
installations.

86
Proactive Detection of Security Incidents

Honeypots

5.2.2.1.7 Tiny Honeypot
D

ET
EC

T
IO

N

SC
O

P
E

A
C

C
U

R
A

C
Y

O
F

EM
U

LA
TI

O
N

Q
U

A
LI

TY
 O

F

C
O

LL
EC

TE
D

 D
A

T
A

SC
A

LA
B

IL
IT

Y
 A

N
D

P
ER

FO
R

M
A

N
C

E

R
EL

IA
B

IL
IT

Y

EX
TE

N
SI

B
IL

IT
Y

EA
SE

 O
F

U
SE

A
N

D
 S

E
TT

IN
G

 U
P

EM
B

E
D

D
A

B
IL

IT
Y

SU
P

P
O

R
T

C
O

ST

U
SE

FU
LN

E
SS

 F
O

R
 C

ER
T

MULTI $$

Detection scope Rating Cost Usefulness for CERT

MULTI Multi-function Excellent $ Low Essential

 Good $$ Medium Useful

SPEC Specialised Fair $$$ High Not useful

 Poor

Version tested: 0.4.6

Date tested: May 2012

Testing time: 10 hours

Website: http://freecode.com/projects/thp

Tiny Honeypot is a low-interaction honeypot. The software includes a number of scripts
emulating different services: HTTP, SMTP, POP3, MSSQL and system shell. The honeypot can
also run in passive mode, listening for connections and logging activity without interacting
with the attackers. The honeypot requires external software to attach to a network interface,
listen for traffic, and run scripts for incoming connections. The author recommends inetd-
compatible super-server for this purpose. Alternatively, Honeyd (see section 5.2.2.1.4) can be
used.

Evaluation
Detection scope: Multi-function
The tool comes with a set of emulated services implemented by its authors, but can be
configured to listen on any port and log received data.

Accuracy of emulation: Good
The emulation level in Tiny Honeypot is high enough to deceive automated tools. However, it
is relatively easy to detect by humans during a typical session. The services are emulated to a
basic extent and the responses are always the same. Emulation of some services is
underdeveloped, yet still adequate for machine interactions.

Quality of collected data: Fair
Information from every session is recorded in a text file, including date, source IP address and
port, session size and (in some cases) duration time. Furthermore, each entry contains a
reference to a file with session content. However, the file contains only data sent from a client
to the server. With an iptables script included in the package, it is possible to log information
about connections. The Tiny Honeypot does not classify incoming data.

http://freecode.com/projects/thp
http://freecode.com/projects/thp
http://freecode.com/projects/thp
http://freecode.com/projects/thp
http://freecode.com/projects/thp
http://freecode.com/projects/thp
http://freecode.com/projects/thp
http://freecode.com/projects/thp
http://freecode.com/projects/thp

87

Proactive Detection of Security Incidents

Honeypots

Scalability and performance: Good
Each of the emulated services by the Tiny Honeypot is a simple script, written in Perl and run
by an external server, such as inetd. Therefore, there should be no problems with
performance. Multiple instances of the honeypot may be run on a single host with different IP
addresses assigned.

Reliability: Excellent
Due to the fact that the Tiny Honeypot consists of simple scripts, each run independently for a
single incoming connection, the overall reliability is high. There were no indications of
potential future problems noted during observations.

Extensibility: Excellent
The Tiny Honeypot software is distributed as open-source, written in Perl, which is a popular
scripting language. The code is clear and includes comments. The tool has a structural design:
it only takes writing a single custom function to emulate a new service.

Ease of use and setting up: Fair
There are installation packages available for Debian GNU/Linux. The installation process using
the archive available on the project web page is also well documented and not complicated.
All configuration options are available in one file, but inetd or similar software that executes
honeypot scripts needs to be configured separately. The author provides sample configuration
files. Not all aspects of the honeypot performance may be configured. The tool does not
provide any interactive user interface.

Embeddability: Fair
The Tiny Honeypot writes information to a text file, which is easy to process. Custom tools are
required to interpret them.

Support: Poor
The project development has been suspended since 2003. The official web page is
unavailable, and there is no community associated with the project.

Costs: Medium $$
The overall costs of using Tiny Honeypot are low. However, due to lack of any support,
patching and extending functionality will require additional workload. Certain costs may also
be associated with integration with other tools.

Usefulness for CERTs: Useful
The Tiny Honeypot can be used to analyse attack patterns; however, its use will require
sizeable effort. Because of its versatility the honeypot can be used to emulate multiple
network services.

88
Proactive Detection of Security Incidents

Honeypots

Figure 18: Tiny Honeypot in operation (screenshot)

Figure 19: Tiny Honeypot in operation (screenshot)

89

Proactive Detection of Security Incidents

Honeypots

5.2.2.2 Web application honeypots

Web application honeypots are honeypots specialised in detecting and analysing attacks on
web applications.

5.2.2.2.1 DShield Web Honeypot

D
ET

EC
T

IO
N

SC
O

P
E

A
C

C
U

R
A

C
Y

O
F

EM
U

LA
TI

O
N

Q
U

A
LI

TY
 O

F

C
O

LL
EC

TE
D

 D
A

T
A

SC
A

LA
B

IL
IT

Y
 A

N
D

P

ER
FO

R
M

A
N

C
E

R
EL

IA
B

IL
IT

Y

EX
TE

N
SI

B
IL

IT
Y

EA
SE

 O
F

U
SE

A
N

D
 S

E
TT

IN
G

 U
P

EM
B

E
D

D
A

B
IL

IT
Y

SU
P

P
O

R
T

C
O

ST

U
SE

FU
LN

E
SS

 F
O

R
 C

ER
T

SPEC $$

Detection scope Rating Cost Usefulness for CERT

MULTI Multi-function Excellent $ Low Essential

 Good $$ Medium Useful

SPEC Specialised Fair $$$ High Not useful

 Poor

Version tested: 0.1 (SVN revision 124)

Date tested: April 2012

Testing time: 12 hours

Website: https://sites.google.com/site/webhoneypotsite/

DShield Web Honeypot is a low-interaction honeypot for web applications. The aim of the
project is to collect quantitative data measuring the activity of automated or semi-automated
attacks against web applications. Apart from information about the attacks, the honeypot will
also identify scans. DShield Web Honeypot is a simple PHP script, emulating a number of
popular web applications (CMS, web forums, etc.). For complete installation, including
download of application templates, it is required to create a DShield account (free of charge).
By default, the honeypot will send all activity logs to DShield servers, where they will be
correlated with information from honeypots of other project members.

Evaluation
Detection scope: Specialised
The tool emulates a vulnerable web application.

Accuracy of emulation: Fair
The emulation of web applications is based on sending a suitable template (determined from
a specific web application request) to the requestor. The regular expressions used to
determine the template to serve are inaccurate and the templates are underdeveloped. The
emulation level is appropriate for detection of automated attacks or scans, but humans can
easily detect it as fake.

https://sites.google.com/site/webhoneypotsite/
https://sites.google.com/site/webhoneypotsite/
https://sites.google.com/site/webhoneypotsite/
https://sites.google.com/site/webhoneypotsite/
https://sites.google.com/site/webhoneypotsite/
https://sites.google.com/site/webhoneypotsite/
https://sites.google.com/site/webhoneypotsite/
https://sites.google.com/site/webhoneypotsite/
https://sites.google.com/site/webhoneypotsite/
https://sites.google.com/site/webhoneypotsite/
https://sites.google.com/site/webhoneypotsite/
https://sites.google.com/site/webhoneypotsite/

90
Proactive Detection of Security Incidents

Honeypots

Quality of collected data: Fair
The honeypot writes task data into a text file. Data written include HTTP headers of client
requests, but not the response (only the information about the used template is logged).
Format of the log files is not easy to parse and it cannot be customised. Furthermore, file
names vary as they depend on the current date. The tool does not provide any mechanism for
automatic classification.

Scalability and performance: Good
DShield Web Honeypot is a set of PHP scripts run by an HTTP server (e.g. Apache). A single
server can host many honeypots on different virtual hosts. The honeypot is written in a
scripting language; therefore its performance is not very good. However, given the simplicity
of its code, this does not constitute a problem.

Reliability: Excellent
The honeypot does not require any extra supervision. There do not seem to be any indications
of future problems either.

Extensibility: Good
It is possible to create custom templates of web applications. The process is not well
documented, but it is not very complicated either. The source code is open, under the GNU
GPL v2 licence, and includes some comments.

Ease of use and setting up: Good
The DShield Web Honeypot installation process is very straightforward – it only requires
copying PHP scripts and the HTTP server configuration file. There are installation packages
available for various Linux distributions: Debian, RedHat, OpenSUSE as well as Mac OSX. The
configuration of the tool is split into two components: one for the honeypot and a separate
one for the templates. The configuration files are easy to understand. The user
documentation is available, as well as a list of FAQs. The honeypot does not provide any user
interface.

Embeddability: Fair
One of the default tasks of the tool is to report attack data to DShield. It is possible to change
the configuration to report to another server. The logs are sent in simple text format over
HTTP. Other than that, the honeypot does not provide any mechanisms for integration with
other systems.

Support: Fair
The Dshield Web Honeypot project offers user documentation and FAQ. The tool is supported
but no longer actively developed.

Costs: Medium $$
Difficult integration with other systems and limited support negatively impact overall costs of
usage.

91

Proactive Detection of Security Incidents

Honeypots

Usefulness for CERTs: Useful
The DShield Web Honeypot can be used to monitor web attacks, which are common on the
Internet.

5.2.2.2.2 GHH (Google Hack Honeypot)

D
ET

EC
T

IO
N

SC
O

P
E

A
C

C
U

R
A

C
Y

O
F

EM
U

LA
TI

O
N

Q
U

A
LI

TY
 O

F

C
O

LL
EC

TE
D

 D
A

T
A

SC
A

LA
B

IL
IT

Y
 A

N
D

P

ER
FO

R
M

A
N

C
E

R
EL

IA
B

IL
IT

Y

EX
TE

N
SI

B
IL

IT
Y

EA
SE

 O
F

U
SE

A
N

D
 S

E
TT

IN
G

 U
P

EM
B

E
D

D
A

B
IL

IT
Y

SU
P

P
O

R
T

C
O

ST

U
SE

FU
LN

E
SS

 F

O
R

 C
ER

T

SPEC $

Detection scope Rating Cost Usefulness for CERT

MULTI Multi-function Excellent $ Low Essential

 Good $$ Medium Useful

SPEC Specialised Fair $$$ High Not useful

 Poor

Version tested: 1.2

Date tested: 25 May 2012

Testing time: 1 day

Website: http://ghh.sourceforge.net/

GHH is a low-interaction web honeypot designed for detecting attackers that use search
engines to find vulnerable websites. It is distributed as a collection of 13 independent
modules, each emulating a different website that might seem vulnerable. GHH uses signatures
from the Google Hacking Database project25 in order to identify attackers using known Google
queries for reconnaissance.

Evaluation
Range of emulated services: Specialised
GHH is able to emulate web pages using an HTTP server with a PHP engine. It does not
support other protocols.

Accuracy of service emulation: Fair
While structure (HTML, JavaScript, CSS) of web pages emulated by the honeypot can be made
virtually indistinguishable from their real counterparts, they are usually not interactive (e.g.
clicking the ‘Login’ button results in a 404 error). Lack of feedback may disclose the presence
of the honeypot to the attacker after the initial request. PHPShell emulator is an exception,
since it can return results of several predefined UNIX commands.

25 Currently hosted at http://www.exploit-db.com/google-dorks

http://ghh.sourceforge.net/
http://ghh.sourceforge.net/
http://ghh.sourceforge.net/
http://ghh.sourceforge.net/
http://ghh.sourceforge.net/
http://ghh.sourceforge.net/
http://ghh.sourceforge.net/
http://ghh.sourceforge.net/
http://ghh.sourceforge.net/
http://www.exploit-db.com/google-dorks/
http://www.exploit-db.com/google-dorks/
http://www.exploit-db.com/google-dorks/
http://www.exploit-db.com/google-dorks/
http://www.exploit-db.com/google-dorks/
http://www.exploit-db.com/google-dorks/
http://www.exploit-db.com/google-dorks/
http://www.exploit-db.com/google-dorks/
http://www.exploit-db.com/google-dorks/
http://www.exploit-db.com/google-dorks/
http://www.exploit-db.com/google-dorks/
http://www.exploit-db.com/google-dorks/
http://www.exploit-db.com/google-dorks/
http://www.exploit-db.com/google-dorks/

92
Proactive Detection of Security Incidents

Honeypots

93

Proactive Detection of Security Incidents

Honeypots

Quality of collected data: Good
GHH logs details of every request that is received, including HTTP headers. Using these
headers, the honeypot automatically attempts to determine if the request is a result of a
known reconnaissance query using selected signatures from Google Hack Database.
Otherwise it checks if the source is a web spider – GHH can distinguish between several
known types of spiders or utilise data from the referrer header to detect unknown ones. The
honeypot provides the capability to download malware from remote servers using wget
emulation; however, only the PHP Shell emulator uses this feature in the current version.

Scalability and performance: Excellent
The software is implemented entirely in PHP and run by a HTTP server, therefore there is no
problem handling multiple simultaneous HTTP sessions and utilising multiple servers. Most
websites emulated by the honeypot are very simple and non-interactive, so the expected
performance is very good. Multiple instances of the honeypot can report events to a central
server, using XML-RPC for transport.

Reliability: Good
Each GHH module is run separately, so even if one of them is unstable, it cannot influence
others. PHP scripts are executed in the environment of an HTTP server so any errors or
warnings are logged using standard mechanisms. This way monitoring of services is greatly
simplified. During tests a trivial syntax error was discovered in one of the honeypots that
prevented it from running, therefore it may be assumed that the software was not well tested
prior to the release.

Extensibility: Excellent
Adding a new honeypot module is easy – there is relevant documentation available on the
project’s website and a fully functional template is provided as a starting point. Basic modules
distributed in the current release consist of approximately 30 lines of PHP code, thanks to the
functionality provided by the GHH core. Existing source code is brief and comprehensible, so
modifying it – if required – should not take much effort. Project uses GPLv2 licence.

Ease of use and setting up: Good
The GHH installation procedure is well documented and takes little time. In the simplest case,
it requires copying of several files, adjusting configuration of GHH logging and placing an
invisible link to URLs handled by the honeypot. No special configuration of the operating
system or the web server is required (default Apache install was used for tests). All modules
may share a single configuration file or use individual ones. However, the configuration is not
separated from the source code of GHH, which may be regarded as a shortcoming of the
solution.

Embeddability: Good
GHH can output data to a CSV file, SQL database or to a remote server over XML-RPC but
cannot be customised. Malware collection works only with XML-RPC logging. The honeypot

94
Proactive Detection of Security Incidents

Honeypots

does not provide any built-in management or monitoring (including logging) facilities and
depends on the HTTP server in this regard.

Support: Poor
The project has been inactive since 2007 and there is no public mailing list or active user
community.

Costs: Low $
GHH is available on an open-source licence, is easy to install and does not require much
maintenance. Extending or adapting the software should not require significant resources.

Usefulness for CERTs: Useful
GHH can be used as a simple web honeypot to detect attacks on the emulated services and
malware collection. However, its unique capability is to detect attackers using known Google
reconnaissance queries (even if they do not interact with the honeypot any further). This
feature makes it a valuable research tool, but in order to use it effectively a more current
honeypot module would have to be developed in order to follow current attack trends.

Figure 20: Google Hack Honeypot in operation (screenshot)

95

Proactive Detection of Security Incidents

Honeypots

5.2.2.2.3 Glastopf

D
ET

EC
T

IO
N

SC

O
P

E

A
C

C
U

R
A

C
Y

O
F

EM
U

LA
TI

O
N

Q
U

A
LI

TY
 O

F

C
O

LL
EC

TE
D

 D
A

T
A

SC
A

LA
B

IL
IT

Y
 A

N
D

P

ER
FO

R
M

A
N

C
E

R
EL

IA
B

IL
IT

Y

EX
TE

N
SI

B
IL

IT
Y

EA
SE

 O
F

U
SE

A
N

D
 S

E
TT

IN
G

 U
P

EM
B

E
D

D
A

B
IL

IT
Y

SU
P

P
O

R
T

C
O

ST

U
SE

FU
LN

E
SS

 F
O

R
 C

ER
T

SPEC $

Detection scope Rating Cost Usefulness for CERT

MULTI Multi-function Excellent $ Low Essential

 Good $$ Medium Useful

SPEC Specialised Fair $$$ High Not useful

 Poor

Version tested: SVN revision 163

Date tested: April 2012

Testing time: 16 hours

Website: http://glastopf.org/

http://dev.glastopf.org/projects/glaspot

Glastopf v3 (Glaspot) is a low-interaction honeypot for web applications. It is able to emulate
vulnerabilities and gather information about incoming attacks. Its working principle is to
respond to the attacker in accordance with his expectations, in order to provoke an attack.
The honeypot focuses on emulating attack types rather than particular web applications,
which makes it versatile and easy to maintain.

Glastopf supports multistage attacks. It has a built-in PHP sandbox for code injection
emulation. It can be run standalone in its own Python web server or via WSGI. It has modular
architecture, which allows it to attract attacks targeting any web application.

The project is actively developed; therefore any bugs or shortcomings are quickly addressed.
There are also plans to implement additional functionality, e.g. support for the HTTP POST
method.

Evaluation
Detection scope: Specialised
Glastopf emulates vulnerable web applications.

Accuracy of emulation: Excellent
The honeypot allows an attacker to conduct common attacks on websites and serves him the
expected content. Glastopf supports remote file inclusion vulnerabilities along with emulation
of PHP code execution, simulation of local files, support for SQL injections and the capability
to display files typically found on a web server (such as robots.txt).

http://glastopf.org/
http://glastopf.org/
http://glastopf.org/
http://glastopf.org/
http://glastopf.org/
http://glastopf.org/
http://dev.glastopf.org/projects/glaspot
http://dev.glastopf.org/projects/glaspot
http://dev.glastopf.org/projects/glaspot
http://dev.glastopf.org/projects/glaspot
http://dev.glastopf.org/projects/glaspot
http://dev.glastopf.org/projects/glaspot
http://dev.glastopf.org/projects/glaspot
http://dev.glastopf.org/projects/glaspot
http://dev.glastopf.org/projects/glaspot
http://dev.glastopf.org/projects/glaspot
http://dev.glastopf.org/projects/glaspot

96
Proactive Detection of Security Incidents

Honeypots

Quality of collected data: Good
Glastopf stores information about the connection source (both IP address and port), the
requested resource (URL) and the honeypot response. The range of metadata logged for an
attack is wide, but not adjustable. Events are classified based on HTTP requests responsible
for a specific type of attack. Classification is based on predefined patterns (regular
expressions).

Scalability and performance: Fair
The performance of the tool is limited and does not exceed 10 HTTP requests per second on
an average server. It is possible to run multiple honeypot instances on the same server and
use a proxy server for load balancing. It is also possible to run Glaspot via a WSGI module.

Reliability: Good
The honeypot sometimes does not process a request due to a lack of certain exception
handling (this is a rare event and it depends on request type). There was no effect of this on
the overall operation of the software, i.e. processing the rest of requests. Because of the
continuous development of the software unexpected problems may occur.

Extensibility: Excellent
Glastopf has a modular architecture allowing for the creation of custom plugins. The tool has
an open-source code, written in a popular programming language – Python. The code is clean
and partially documented.

Ease of use and setting up: Good
The software is available directly from the SVN repository. Deployment of the honeypot is
straightforward and does not cause any problems. Documentation is available on the project’s
website. Configuration file is clean (INI-like file format) and is located in one place. It is not
possible to configure the individual modules.

Embeddability: Good
The Glastopf tool stores information in a standard format. Information about connections,
which is used to monitor the honeypot’s functionality, is saved to a text file. The metadata is
stored in a database. By default SQLite database is used; MySQL, PostgreSQL and MongoDB
are supported as well. In addition, the honeypot supports HPFeeds.26 It is possible to create
custom modules, which can collect data in any format.

Support: Excellent
The project is under constant development and there is an active community around it. There
is also a mailing list and an IRC channel, where one can get help from the author.

26 see http://redmine.honeynet.org/projects/hpfeeds/wiki and https://github.com/rep/hpfeeds

http://redmine.honeynet.org/projects/hpfeeds/wiki
http://redmine.honeynet.org/projects/hpfeeds/wiki
http://redmine.honeynet.org/projects/hpfeeds/wiki
http://redmine.honeynet.org/projects/hpfeeds/wiki
http://redmine.honeynet.org/projects/hpfeeds/wiki
http://redmine.honeynet.org/projects/hpfeeds/wiki
http://redmine.honeynet.org/projects/hpfeeds/wiki
http://redmine.honeynet.org/projects/hpfeeds/wiki
http://redmine.honeynet.org/projects/hpfeeds/wiki
http://redmine.honeynet.org/projects/hpfeeds/wiki
http://redmine.honeynet.org/projects/hpfeeds/wiki
http://redmine.honeynet.org/projects/hpfeeds/wiki
http://redmine.honeynet.org/projects/hpfeeds/wiki
https://github.com/rep/hpfeeds/
https://github.com/rep/hpfeeds/
https://github.com/rep/hpfeeds/
https://github.com/rep/hpfeeds/
https://github.com/rep/hpfeeds/
https://github.com/rep/hpfeeds/
https://github.com/rep/hpfeeds/
https://github.com/rep/hpfeeds/
https://github.com/rep/hpfeeds/

97

Proactive Detection of Security Incidents

Honeypots

Costs: Low $
Glastopf is open-source software and it is easy to modify. Project support is very good, which
helps to resolve potential issues and ensures future development.

Usefulness for CERT: Essential
Glastopf can be considered essential for web application attack analysis.

Figure 21: Glastopf in operation (screenshot)

Figure 22: Glastopf in operation (screenshot)

98
Proactive Detection of Security Incidents

Honeypots

5.2.2.3 SSH honeypots

Low-interaction SSH honeypots specialise in the detection and analysis of attacks against SSH
applications.

5.2.2.3.1 Kippo

D
ET

EC
T

IO
N

SC

O
P

E

A
C

C
U

R
A

C
Y

O
F

EM
U

LA
TI

O
N

Q
U

A
LI

TY
 O

F

C
O

LL
EC

TE
D

 D
A

T
A

SC
A

LA
B

IL
IT

Y
 A

N
D

P
ER

FO
R

M
A

N
C

E

R
EL

IA
B

IL
IT

Y

EX
TE

N
SI

B
IL

IT
Y

EA
SE

 O
F

U
SE

A
N

D
 S

E
TT

IN
G

 U
P

EM
B

E
D

D
A

B
IL

IT
Y

SU
P

P
O

R
T

C
O

ST

U
SE

FU
LN

E
SS

 F
O

R
 C

ER
T

SPEC $$

Detection scope Rating Cost Usefulness for CERT

MULTI Multi-function Excellent $ Low Essential

 Good $$ Medium Useful

SPEC Specialised Fair $$$ High Not useful

 Poor

Version tested: 0.5

Date tested: 27 April 2012

Testing time: 24 hours

Website: http://code.google.com/p/kippo/

Kippo is a low-interaction server honeypot emulating the Secure Shell (SSH) service. It stores
information about brute-force login attacks against the service and SSH session – actions the
attacker launched against the server. The honeypot is independent from the operating
systems as it is implemented in Python. Kippo is equipped with a number of features, with the
following being the most distinctive:

 stores all the files that were downloaded during the SSH session (simulating wget and
curl commands),

 stores information about attacker’s behaviour in the operating system (commands
that were invoked) in a format allowing to replay it in a screen-cast form,

 fingerprints the type of SSH client software and operating system (using p0f)
 emulates the file system of Debian 5.0 Linux distribution,
 provides contents of some of the files in the emulated file system (e.g. /etc/passwd

file)
 simulates finishing of the SSH session – the honeypot does not really stop the

connection but provides another shell-like environment for gathering additional data
about the attacker’s behaviour.

The honeypot is licensed under a BSD Licence.

99

Proactive Detection of Security Incidents

Honeypots

Evaluation
Detection scope: Specialised
The honeypot can only emulate the Secure Shell (SSH) service.

Accuracy of emulation: Good
The honeypot is very accurate in emulating the SSH protocol and service. Although there are
some differences in communication between a real OpenSSH server and Kippo during the
phase of session negotiation, they are very hard to detect, especially using normal SSH client
software – one has to use a specialised tool or look for SSH protocol deviations in the network
traffic. The honeypot provides an attacker with a Linux shell environment consisting of a set of
commands and file system structure taken from Linux Debian 5.0. Although the set of
commands is not fully emulated, it is sufficient to fool a naive attacker.

Quality of collected data: Good
Kippo stores information about brute-force attack attempts in an easy-to-parse log file. Each
successful attempt creates an additional binary file storing the history of a terminal session in
a form that allows replaying it with a tool provided with the honeypot. In case of the attacker
downloading some external files, each file of the downloaded content is stored in a separate
file, allowing for later analysis. Additionally the honeypot can be configured to store all data in
the MySQL database, easing the analysis process. Although the scope of stored data is
extensive the honeypot lacks the ability to assign classification to attack attempts, which
would add valuable information to the set.

Scalability and performance: Fair
Kippo can listen on many IP addresses. Ports for emulating SSH service can be configured with
no restrictions. The software was not designed to support multi-instance cooperation, but
such configuration can be achieved with some effort. Unfortunately the instances are not able
to share workload among each other and the honeypot does not operate well under high load
(more than 100 concurrent users) – new users can have problems with obtaining connection
to the honeypot.

Reliability: Good
The Kippo honeypot is stable even under heavy load and maintains data consistency.
Restarting the honeypot was not necessary, even after working under heavy load for an
extended period of time. However, when constantly attacked with hundreds of requests per
minute, Kippo started to increasingly consume RAM, and it is possible that after a month or
even more it would need to be restarted. This situation never occurred during testing, but
seems possible based on the observations of the test environment.

Extensibility: Fair
The honeypot is written in the Python language. Its architecture is modular, which may
suggest that extending it with new functionality would be easy. However, this is not
necessarily true due to a lack of code documentation and comments. Fortunately the

100
Proactive Detection of Security Incidents

Honeypots

honeypot’s code is written in a form that allows quick understanding of its workings and
enables a user to learn how to extend the tool just by analysing the attached examples. The
tool is able to emulate any command or application in the simplest form of providing a default
output after invocation. This is often enough to fool a naive attacker.

Ease of use and setting up: Good
Kippo configuration is stored in one text file. Comments in the file are enough to successfully
set up the software. Kippo’s installation is easy and requires installing a small set of
dependencies (all available in Debian Linux) and unpacking the archive containing all the
honeypot components. Kippo logs all brute-force login attempts in one text file that is easy to
parse and understand, as well as in a database, if configured to do so. The tool is not equipped
with any user interface and cannot work in interactive mode (e.g. one cannot change its
configuration without a restart).

Embeddability: Fair
The honeypot does not provide an API interface for easy integration with other systems. The
format of the text file is not standard and requires writing a custom parser. Additional
information gathered during SSH session with the attacker is stored in a binary format, which
hinders its analysis.

Support: Good
The software is developed by a single person. There is a possibility to post information about
bugs or feature requests. A community of users has created a set of very useful tools for
graphical representation of data gathered by the software, which provide great help when
analysing attacks against the honeypot.

Costs: Medium $$
Kippo is an open-source, free tool, but due to limited documentation it can take time to fully
understand how it works and what data can be gathered from it. Extending the tool requires
intermediate knowledge of Python programming language and a familiarity with the Kippo
honeypot architecture. Data interpretation may require implementation of custom parsers for
its format of log files or writing queries to the database used by Kippo to store the data.

Usefulness for CERTs: Essential
Kippo is extremely useful because, in addition to the detection of simple brute-force attacks
against SSH, it also allows you to gather data from terminal session activity of an attacker in
the emulated environment and to catch files downloaded by the attacker.

101

Proactive Detection of Security Incidents

Honeypots

Figure 23: Kippo in operation (screenshot)

5.2.2.3.2 Kojoney

D
ET

EC
T

IO
N

SC

O
P

E

A
C

C
U

R
A

C
Y

O
F

EM
U

LA
TI

O
N

Q
U

A
LI

TY
 O

F
C

O
LL

EC
TE

D
 D

A
T

A

SC
A

LA
B

IL
IT

Y
 A

N
D

P
ER

FO
R

M
A

N
C

E

R
EL

IA
B

IL
IT

Y

EX
TE

N
SI

B
IL

IT
Y

EA
SE

 O
F

U
SE

A
N

D
 S

E
TT

IN
G

 U
P

EM
B

E
D

D
A

B
IL

IT
Y

SU
P

P
O

R
T

C
O

ST

U
SE

FU
LN

E
SS

 F
O

R
 C

ER
T

SPEC $$$

Detection scope Rating Cost Usefulness for CERT

MULTI Multi-function Excellent $ Low Essential

 Good $$ Medium Useful

SPEC Specialised Fair $$$ High Not useful

 Poor

Version tested: 0.0.4.2

Date tested: 2 May 2012

Testing time: 12 hours

Website: http://kojoney.sourceforge.net/

Kojoney is a low-interaction honeypot emulating the SSH service. It allows for the observation
of brute-force login attacks. The honeypot is implemented in Python and builds on top of the
Twisted Conch library base. It is distributed under GPLv2. The development of the honeypot
ended in 2010.

102
Proactive Detection of Security Incidents

Honeypots

Evaluation
Detection scope: Specialised
The honeypot can only emulate the Secure Shell (SSH) service.

Accuracy of emulation: Good
Kojoney can be detected when using specialised tools or when analysing network traffic
generated by it during the SSH session negotiation phase. After successful authentication a
user is presented with a fake terminal allowing only a basic set of commands to be invoked.
Because of the limited functionality of the emulated environment, Kojoney can be easily
discovered. Nevertheless it is still very useful as a detection mechanism for brute-force login
attacks.

Quality of collected data: Fair
Kojoney gathers the following basic information about brute-force attacks: attempt of session
negotiation, IP address of the attacker, username used and list of commands invoked in the
simulated terminal. The honeypot does not make any classification of observed behaviour but
is able to generate a human-readable report summarising observed attacks. Additionally, it
stores for later analysis all files downloaded during an SSH session with an attacker. The lack
of a built-in classification mechanism prevents using honeypot data ‘as is’. Without more in-
depth analysis data may lead to wrong assumptions about logged events and therefore to
false classification of some connections as incidents.

Scalability and performance: Good
The honeypot can listen on many IP addresses and can serve more than 100 users at a time
with good performance and responsiveness. The software is not able to support multi-
instance cooperation.

Reliability: Fair
The tool is not equipped with any monitoring solution. Under high load (i.e. more than 2000
active sessions) the honeypot can become unstable and refuse any new connections.

Extensibility: Fair
Kojoney is distributed as open-source (GPL v2). Its architecture is not fully modular, so
extending the functionality can be difficult. The honeypot does not provide any API.

Ease of use and setting up: Fair
The Kojoney honeypot documentation is not extensive, but sufficient for successful use.
Unfortunately it does not describe some configuration aspects, such as definition of a port to
listen on or the location of directory to store log files. Such options are present in one of the
source files. The default configuration is limited to defining a list of usernames and passwords
which allow the attacker to gain access to emulated terminal. The installation of Kojoney is
quite difficult and requires advanced knowledge of Linux operating system and methods of

103

Proactive Detection of Security Incidents

Honeypots

code compilation. Software does not have any interactive GUI but is equipped with a set of
tools allowing generation of attack reports.

Embeddability: Fair
The honeypot does not provide any API for integration purposes. It is possible to parse and
analyse Kojoney log files but this requires implementing a custom parser. As the format of the
log file is simple, developing such a solution should not be difficult. It is not possible to define
the scope or types of data gathered by the honeypot. Information that can be obtained
include: brute-force attempts, successful logins, commands invoked in the system and files
downloaded by the attacker. The tool works as an SSH daemon and is fully automated.

Support: Poor
Kojoney has not been developed since 2010. Also it does not appear to be a project
community at all.

Costs: High $$$
Wide deployment of the honeypot can generate high costs, mainly because it is only partially
compatible with newer versions of the libraries in Linux systems and because its development
has stopped.

Usefulness for CERTs: Not useful
Usefulness of the Kojoney honeypot is diminished mainly because other active projects
currently provide similar functionality.

Figure 24: Kojoney in operation (screenshot)

104
Proactive Detection of Security Incidents

Honeypots

5.2.2.4 SCADA honeypots

SCADA honeypots specialise in detection of attacks against ICS networks.

5.2.2.4.1 SCADA HoneyNet Project

D
ET

EC
T

IO
N

SC
O

P
E

A
C

C
U

R
A

C
Y

O
F

EM
U

LA
TI

O
N

Q
U

A
LI

TY
 O

F

C
O

LL
EC

TE
D

 D
A

T
A

SC
A

LA
B

IL
IT

Y
 A

N
D

P
ER

FO
R

M
A

N
C

E

R
EL

IA
B

IL
IT

Y

EX
TE

N
SI

B
IL

IT
Y

EA
SE

 O
F

U
SE

A

N
D

 S
E

TT
IN

G
 U

P

EM
B

E
D

D
A

B
IL

IT
Y

SU
P

P
O

R
T

C
O

ST

U
SE

FU
LN

E
SS

 F
O

R
 C

ER
T

MULTI $

Detection scope Rating Cost Usefulness for CERT

MULTI Multi-function Excellent $ Low Essential

 Good $$ Medium Useful

SPEC Specialised Fair $$$ High Not useful

 Poor

Version tested: 0.3

Date tested: 10 April 2012

Testing time: none, code review only

Website: http://sourceforge.net/projects/scadahoneynet/

The project aims to create a low-interaction honeypot emulating industrial control system
networks of various architectures (SCADA, DCS, PLC). Due to significant differences between
ICS networks, the project attempts to deliver basic components that can be arranged in a
honeynet that closely resembles the real system that is deployed in a particular location.
SCADA HoneyNet is implemented as a set of Python scripts for Honeyd.

Evaluation
Detection scope: Multi-function
The honeypot consists of a set of four scripts emulating different services common in ICS
networks: embedded Telnet and FTP servers, web-based control panel and a device using
Modbus protocol. These different services qualify its detection scope as ‘multi-function’.

Accuracy of emulation: Fair
Emulation of provided services is limited to a few commands only. For that reason, it is not
expected that the honeypot will be exposed in any longer interaction with an attacker.

Quality of collected data: Poor
SCADA HoneyNet scripts do not collect data in a coherent manner, and just log selected
information to files for monitoring or diagnostic purposes. Additional mechanisms for
capturing and analysing network traffic should be deployed in order to gather more
operational data. There are no built-in classification or malware collection capabilities.

http://sourceforge.net/projects/scadahoneynet/
http://sourceforge.net/projects/scadahoneynet/
http://sourceforge.net/projects/scadahoneynet/
http://sourceforge.net/projects/scadahoneynet/
http://sourceforge.net/projects/scadahoneynet/
http://sourceforge.net/projects/scadahoneynet/
http://sourceforge.net/projects/scadahoneynet/
http://sourceforge.net/projects/scadahoneynet/
http://sourceforge.net/projects/scadahoneynet/
http://sourceforge.net/projects/scadahoneynet/

105

Proactive Detection of Security Incidents

Honeypots

106
Proactive Detection of Security Incidents

Honeypots

Scalability and performance: Good
Although SCADA HoneyNet is implemented in an interpreted language (Python), emulation of
services is very basic and does not require significant amounts of CPU time or memory,
therefore the expected performance is high. Since all scripts are run by Honeyd and do not
use any external resources or communication channels, the solution should be easily scalable.

Reliability: Good
No negative opinions regarding stability of the honeypot were found. The source code seems
to be well structured and concise; therefore no significant problems in a production
environment are expected. The scripts do not produce diagnostic information in a coherent
manner, so monitoring of multiple log files is necessary.

Extensibility: Fair
Modification of existing scripts (e.g. extending the range of supported commands for more
improved emulation accuracy) should not be difficult – the source code is open and available
under a GPL licence. There is no documentation for developers, but the code responsible for
the emulation is brief (less than 300 lines in total) and should be easy to extend.

Ease of use and setting up: Fair
SCADA HoneyNet requires Honeyd (see section 5.2.2.1.4), which is responsible for maintaining
network-level communication and management of scripts that emulate particular services.
After this precondition is fulfilled, installation of the honeypot is easy – scripts must be placed
in a predefined directory and appropriate entries have to be added to Honeyd configuration.
The scripts themselves do not provide any configuration options, and any change of behaviour
requires direct modifications to the source code. Similarly, there are no built-in monitoring or
management capabilities. The documentation available on the project’s site contains a
general description of the project goals, rationale behind different service emulators and
methods used for their implementation, but there is no complete reference manual or tutorial
explaining how to set up the honeypot.

Embeddability: Good
The solution is implemented as a set of independent scripts that use standard input and
output for communication (as typical UNIX tools). Because of this, each script can be used
separately, even outside of the Honeyd environment (e.g. using inetd). Since functionality of
the honeypot is limited to interaction with an attacker and it does not provide any metadata
related to connections, requirements related to the output data do not apply.

Support: Poor
The project has not been developed since 2005. It lacks a user community – the mailing list
seems to have been inactive for many years.

107

Proactive Detection of Security Incidents

Honeypots

Costs: Low $
Deployment of the solution should not involve significant costs. Even if Honeyd is not used in
the organisation, simplicity of the interface of SCADA HoneyNet’s scripts means that they can
be integrated in alternative honeypot
systems.

Usefulness for CERTs: Not useful
Adding emulation of services common in
ICS networks may enable detection of
scanning activity and initial attacks
targeted for these systems. However, it is
not clear if such attacks are observable on
the Internet. The honeypot would
probably be most useful in a real ICS
network. Nevertheless, due to low
deployment costs and rare ability to
emulate Modbus devices, SCADA
HoneyNet may be integrated into existing
monitoring systems just in case attacks
targeted at the ICS network emulated by
the honeypot become more common on
the Internet or used for experimental
purposes.

5.2.2.4.2 SCADA Honeynet (Digital Bond)

D
ET

EC
T

IO
N

SC
O

P
E

A
C

C
U

R
A

C
Y

O
F

EM
U

LA
TI

O
N

Q
U

A
LI

TY
 O

F

C
O

LL
EC

TE
D

 D
A

T
A

SC
A

LA
B

IL
IT

Y
 A

N
D

P

ER
FO

R
M

A
N

C
E

R
EL

IA
B

IL
IT

Y

EX
TE

N
SI

B
IL

IT
Y

EA
SE

 O
F

U
SE

A
N

D
 S

E
TT

IN
G

 U
P

EM
B

E
D

D
A

B
IL

IT
Y

SU
P

P
O

R
T

C
O

ST

U
SE

FU
LN

E
SS

 F
O

R
 C

ER
T

MULTI $$

Detection scope Rating Cost Usefulness for CERT

MULTI Multi-function Excellent $ Low Essential

 Good $$ Medium Useful

SPEC Specialised Fair $$$ High Not useful

 Poor

Version tested: .08

Date tested: 6 April 2012

Testing time: 1 day

Website: http://www.digitalbond.com/tools/scada-honeynet/

Figure 25: SCADA HoneyNet in operation
(screenshot)

http://www.digitalbond.com/tools/scada-honeynet/
http://www.digitalbond.com/tools/scada-honeynet/
http://www.digitalbond.com/tools/scada-honeynet/
http://www.digitalbond.com/tools/scada-honeynet/
http://www.digitalbond.com/tools/scada-honeynet/
http://www.digitalbond.com/tools/scada-honeynet/
http://www.digitalbond.com/tools/scada-honeynet/
http://www.digitalbond.com/tools/scada-honeynet/
http://www.digitalbond.com/tools/scada-honeynet/
http://www.digitalbond.com/tools/scada-honeynet/
http://www.digitalbond.com/tools/scada-honeynet/
http://www.digitalbond.com/tools/scada-honeynet/
http://www.digitalbond.com/tools/scada-honeynet/
http://www.digitalbond.com/tools/scada-honeynet/

108
Proactive Detection of Security Incidents

Honeypots

SCADA Honeynet consists of a preconfigured set of tools that together form a honeypot for
ICS networks, created by Digital Bond. The system consists of two virtual machines, available
for download from the company’s website. The first one serves as a low-interaction honeypot
which emulates several services common in industrial environments. The role of the other
one is monitoring network traffic to the honeypot and data collection, using installed
Honeywall software. The solution was evaluated as a whole, including software running on
both virtual machines.

One of the main elements of the low-interaction honeypot machine is Honeyd, where
selected standard scripts are slightly modified in order to more closely resemble services
present in ICS networks. SCADA HoneyNet Project (see section 5.2.2.4.1) took a similar
approach; however, Digital Bond’s solution does not incorporate code from its predecessor.
Apart from Honeyd, the low-interaction honeypot runs independent FTP (iFTPd) and HTTP
(FizmezWebServer) servers configured in a way that aims to emulate SCADA environment. The
preinstalled software also includes a simple device emulator that uses the Modbus protocol
(TCP), built on Java Modbus (jamod).

The virtual machine with Honeywall software can be used to monitor traffic to the low-
interaction honeypot distributed by Digital Bond, but a configuration with a real industrial
control system working as a high-interaction honeypot (not controlling any real processes) is
also possible. Functionality of Snort IDS, which is a part of Honeywall, was extended with new
rules detecting Modbus, DNP3 and ICCP protocols but the software was not modified
otherwise.

Evaluation
Detection scope: Multi-function
The honeypot is capable of emulating various services encountered in ICS networks: Telnet,
FTP, HTTP, Modbus.

Accuracy of emulation: Fair
Emulated services resemble their real counterparts in a very limited way, e.g. they display
identical banner on login. It makes the honeypot easy to spot and may prevent any longer
interaction with an attacker.

Quality of collected data: Poor
The set of services that form the low-interaction honeypot do not gather data in a systematic
or coherent manner. Only some diagnostic information is logged in multiple files, using
different formats. The evaluated solution uses Honeywall server for data processing and
analysis; however, its base functionality was not rated here (see section 8.5.1 for an
evaluation of Honeywall). Rules added by Digital Bond detect various kinds of suspicious
traffic that is sent to the low-interaction honeypot and raises an alert when such situation
occurs (basic event classification). The honeypot is not capable of collecting malware;
however, it can be extracted from network dumps.

109

Proactive Detection of Security Incidents

Honeypots

Scalability and performance: Poor
With the exception of Honeyd, the tools that are used for emulation of services are not able
to use more than a single IP address, which significantly limits scalability of the whole
solution. The fact that real FTP and HTTP servers were used makes the assessment of the
overall performance difficult; more thorough performance tests are required to determine if
they have any problems with throughput or handling of multiple simultaneous connections.

Reliability: Fair
No information was found on the stability of the SCADA Honeynet software. A complex
architecture – different methods of emulation for particular services, using two virtual
machines – and incorporating real but not popular HTTP and FTP servers can have a negative
impact on the reliability of the whole system.

Extensibility: Fair
Except for the Modbus device emulator, the source code of all components of the system is
available on open-source licences. The low-interaction honeypot consists of a set of loosely
integrated tools, therefore adding a new service is straightforward – either by installing a new
Honeyd script or by starting a new daemon. However, the architecture of the solution makes
any modifications to the core functionality difficult. There is no common API that components
could use for exchanging information, and no documentation for developers.

Ease of use and setting up: Fair
Digital Bond distributes SCADA Honeynet as virtual machine images for VMware. Since files
containing disk images are in the VMDK format, it is possible to import them to other
virtualisation tools, e.g. VirtualBox. Installation process of the honeynet is well documented
and its deployment should not take much time. The low-interaction honeypot is not easy to
configure, e.g. it is not possible to change parameters of Honeyd scripts without modifications
to the source code, and FTP and HTTP have use different configuration files (their
configuration is used to implement the emulated environment) which have to be customised
separately. The Modbus emulator lacks documentation so it is difficult to determine if it is
possible to configure it at all. Each tool requires separate monitoring procedures, since
location of the log files and their format is not coherent. Honeywall can be viewed as a user
interface for SCADA Honeynet but it is not rated in this section.

Embeddability: Poor
Neither the whole system, nor its individual parts are designed to work as a component within
a larger system. Individual tools installed on the low-interaction honeypot are limited to
replying to attackers’ requests and do not provide enough data about activity in the
monitored network. The honeynet consists of multiple elements that have to be managed and
monitored separately. There is no API that could be used for communication with external
tools.

Support: Poor

110
Proactive Detection of Security Incidents

Honeypots

The most recent version of SCADA Honeynet seems to have been released in 2007 and the
project does not show any signs of activity. Documentation provided on the website is limited
to a general description of the software and the installation process. There is no public mailing
list or a user community. Digital Bond does not advertise any support for the honeypot but it
is still engaged in projects related to the security of ICS networks, e.g. Basecamp,27 so it may
be possible to obtain support by contacting the company directly.

Costs: Medium $$
While the software itself is available on an open licence (with the exception of the Modbus
device emulator), customising it to cooperate effectively with other monitoring solutions may
be difficult. Re-implementing features offered by SCADA Honeynet emulators on top of
different components should not take much effort, and would probably lower the
maintenance costs significantly in the long term.

Usefulness for CERTs: Not useful
According to information published by Digital Bond, in 18 months of deployment of the
honeypot on the Internet no attacks targeting ICS systems were detected. However, the
proper environment for deployment of SCADA Honeynet would be a real internal ICS network.
Only a limited number of CERTs are directly involved in securing of such systems. For these
reasons, the honeypot does not seem useful for deployment on the Internet or non-ICS
internal networks. It should be noted that Snort rules prepared by Digital Bond are available
for download separately and can be imported in monitoring systems in order to enhance their
detection capabilities.

Figure 26: SCADA Honeynet (Digital Bond) in operation (screenshot)

27 http://www.digitalbond.com/tools/basecamp/

http://www.digitalbond.com/tools/basecamp/

111

Proactive Detection of Security Incidents

Honeypots

5.2.2.5 VoIP honeypots

VoIP honeypots specialise in detecting and analysing attacks against VoIP-based services.

5.2.2.5.1 Dionaea

NOTE: Dionaea is not strictly a VoIP honeypot, but it has an extensive module emulating VoIP
based on SIP (establishing SIP sessions) (see section 5.2.2.1.2).

5.2.2.5.2 Artemisa

D
ET

EC
T

IO
N

SC
O

P
E

A
C

C
U

R
A

C
Y

O
F

EM
U

LA
TI

O
N

Q
U

A
LI

TY
 O

F
C

O
LL

EC
TE

D
 D

A
T

A

SC
A

LA
B

IL
IT

Y
 A

N
D

P
ER

FO
R

M
A

N
C

E

R
EL

IA
B

IL
IT

Y

EX
TE

N
SI

B
IL

IT
Y

EA
SE

 O
F

U
SE

A
N

D
 S

E
TT

IN
G

 U
P

EM
B

E
D

D
A

B
IL

IT
Y

SU
P

P
O

R
T

C
O

ST

U
SE

FU
LN

E
SS

 F
O

R
 C

ER
T

SPEC $$

Detection scope Rating Cost Usefulness for CERT

MULTI Multi-function Excellent $ Low Essential

 Good $$ Medium Useful

SPEC Specialised Fair $$$ High Not useful

 Poor

Version tested: 1.0.91

Date tested: May 2012

Testing time: 16 hours

Website: http://artemisa.sourceforge.net/

Artemisa is a low-interaction VoIP (Voice over Internet Protocol) honeypot based on SIP
(Session Initiation Protocol). It is designed to run in an enterprise environment as a back-end
(fake conventional telephone). It registers multiple honeypot-telephone-numbers in real SIP
registrar server and waits for incoming connections. Artemisa interacts with the attacker
through SIP response messages. It is possible to establish a full voice conversation. Artemisa
analyses SIP messages and classifies an attack. Additional features include the possibility of
defining active response, like reconfiguration of network devices (IPS functionality), scanning
the source of the connection, or even attacking the attacker (not a recommended option).

Evaluation
Detection scope: Specialised
The honeypot emulates only a SIP-based VoIP service.

Accuracy of emulation: Excellent
Artemisa emulates a typical back-end on the enterprise VoIP network. It responds to incoming
SIP messages including establishing voice conversation. Emulation is quite deep (voice
conversation) and correct – accidental disclosure by an incorrect reaction is unlikely.

http://artemisa.sourceforge.net/
http://artemisa.sourceforge.net/
http://artemisa.sourceforge.net/
http://artemisa.sourceforge.net/
http://artemisa.sourceforge.net/
http://artemisa.sourceforge.net/
http://artemisa.sourceforge.net/
http://artemisa.sourceforge.net/

112
Proactive Detection of Security Incidents

Honeypots

113

Proactive Detection of Security Incidents

Honeypots

Quality of collected data: Excellent
The honeypot has three configurable modes: passive, active and aggressive. Running in active
or aggressive mode provides rich and complete metadata. When running in passive mode
Artemisa provides only basic metadata. Additional analyses of the source of the connection,
like obtaining domain name (using whois), or performing a scan to determinate open ports
(using nmap) are not performed in passive mode. Note that scanning can be seen as
controversial and might be illegal in some countries.

Artemisa logs using two easy-to-parse formats: clear text and HTML. All events are
automatically classified into one of the following categories:

 interactive attack
 scanning
 SPIT (Spam over Internet Telephony)
 INVITE message flooding
 OPTIONS message flooding.

Scalability and performance: Fair
Artemisa has the capability to handle a large set of telephone numbers (back-ends), but it
needs to register all of them on a SIP registrar server, which might be an issue (limited
resources). The honeypot can handle at least two telephone connections at the same time by
default, but it is possible to handle more. The tool is not designed to support horizontal
scaling.

Reliability: Good
No unexpected application termination or other problems were observed, but testing
procedure required a fully functional VoIP server, which could not be provided.

Extensibility: Fair
Architecture of the honeypot is not suited for extensions (no support for plugins). There is a
possibility of modifying modules responsible for reaction on detected threats – by design it
uses shell scripts. Changing any of the core functionality requires adaptation of the source
code, which is open.

Ease of use and setting up: Good
The honeypot usage is simple and easy: the setting-up procedure is to run the main Python
script. No source code compilation of the main tool is required, only an additional PJSIP
library28 has to be compiled. Configuration is easy (base knowledge about SIP technology is
required) and placed in text file.

28 http://www.pjsip.org/

http://www.pjsip.org/

114
Proactive Detection of Security Incidents

Honeypots

Artemisa has a simple command-line interactive user interface (CLI), which might be used to
obtain information about the current state of the tool’s activity and to generate some
statistics. No graphic user interface (GUI) is provided, but every handled session is logged in
HTML format, so it might be displayed in a web browser. Good user documentation is
provided.

Embeddability: Fair
Artemisa has neither a programming interface (API) nor any database system support.
However, output data is easy to parse. Moreover, the honeypot generates an HTML-based
report after each session. Another feature is the sending of data via email, which represents
the push technology. Alternatively, the user is able to modify modules responsible for reaction
on detected threats (shell scripts). Such modification can change a module to push all data
into a third party tool (for example, a database system). Range of data reported through
modules is configurable.

Support: Poor
The honeypot is neither maintained nor developed by anyone. The last change in the
repository was made on 20 February 2011.29 A community forum exists but is not active (no
active support is provided). Support is therefore essentially limited to user documentation and
comments in configuration files and source code.

Costs: Medium $$
Artemisa is free software (distributed under GNU General Public Licence version 3). However,
it is neither maintained nor developed by anyone. Artemisa requires SIP registrar server to
register fake telephone numbers. Therefore, only in an enterprise SIP-based VoIP network are
the costs likely to be low, due to the fact that the necessary infrastructure will probably
already exist.

Usefulness for CERTs: Useful
In recent years an increase of VoIP attacks have been observed. CERTs that are interested in
detecting and understanding this type of threat are advised to investigate this solution.
Artemisa might also be useful for corporate CERTs, if SIP-based VoIP telephony is used in their
network.

29 http://artemisa.svn.sourceforge.net/viewvc/artemisa

http://artemisa.svn.sourceforge.net/viewvc/artemisa

115

Proactive Detection of Security Incidents

Honeypots

5.2.2.6 Bluetooth honeypots

Bluetooth honeypots specialise in attacks targeted at Bluetooth-based technologies.

5.2.2.6.1 Bluepot

D
ET

EC
T

IO
N

SC

O
P

E

A
C

C
U

R
A

C
Y

O
F

EM
U

LA
TI

O
N

Q
U

A
LI

TY
 O

F
C

O
LL

EC
TE

D
 D

A
T

A

SC
A

LA
B

IL
IT

Y
 A

N
D

P
ER

FO
R

M
A

N
C

E

R
EL

IA
B

IL
IT

Y

EX
TE

N
SI

B
IL

IT
Y

EA
SE

 O
F

U
SE

A
N

D
 S

E
TT

IN
G

 U
P

EM
B

E
D

D
A

B
IL

IT
Y

SU
P

P
O

R
T

C
O

ST

U
SE

FU
LN

E
SS

 F
O

R
 C

ER
T

SPEC $$$

Detection scope Rating Cost Usefulness for CERT

MULTI Multi-function Excellent $ Low Essential

 Good $$ Medium Useful

SPEC Specialised Fair $$$ High Not useful

 Poor

Version tested: 0.1

Date tested: May 2012

Testing time: 12 hours

Website: http://code.google.com/p/bluepot/

Bluepot is a Bluetooth honeypot. It is
designed to accept and store any
malware sent to it. The honeypot
also interacts with common
Bluetooth attacks, for example
BlueBugging30 or BlueSnarfing.31
Bluepot has a graphical user interface
that allows monitoring of attacks. It
provides graphs, lists and a
dashboard. The honeypot is written
in Java and runs on GNU/Linux.

Figure 27: Bluepot in operation (screenshot)

30 http://trifinite.org/trifinite_stuff_bluebug.html

31 http://trifinite.org/trifinite_stuff_bluesnarf.html

http://code.google.com/p/bluepot/
http://code.google.com/p/bluepot/
http://code.google.com/p/bluepot/
http://code.google.com/p/bluepot/
http://code.google.com/p/bluepot/
http://code.google.com/p/bluepot/
http://code.google.com/p/bluepot/
http://code.google.com/p/bluepot/
http://code.google.com/p/bluepot/
http://code.google.com/p/bluepot/
http://code.google.com/p/bluepot/
http://code.google.com/p/bluepot/
http://trifinite.org/trifinite_stuff_bluebug.html
http://trifinite.org/trifinite_stuff_bluesnarf.html

116
Proactive Detection of Security Incidents

Honeypots

Figure 28: Bluepot in operation (screenshot)

Figure 29: Bluepot in operation (screenshot)

117

Proactive Detection of Security Incidents

Honeypots

Evaluation
Detection scope: Specialised
The honeypot emulates a device equipped with a Bluetooth adapter.

Accuracy of emulation: Good
Bluepot is attempting to implement a fully functional Bluetooth honeypot, i.e. a tool, which
accepts and stores any file sent to it, especially malware. The honeypot is capable of
simulating different major device classes, such as phones or printers, as well as minor device
classes.

Bluepot interacts with common Bluetooth attacks, such as BlueBugging and BlueSnarfing, but
we were unable to successfully use these attack techniques. The honeypot emulates a
bluetooth device well enough to allow an automated attack as well as to deceive an
inexperienced human attacker.

Quality of collected data: Fair
The tool collects information about the protocol used (OBEX, RFCOMM, L2CAP), performed
operation and connection source (Bluetooth hardware address). Bluepot stores each binary
file sent to it. The honeypot does not log either scanning or probing attempts. It does not
classify discovered activity – every connection is treated as an attack. The tool plots graphs on
an ongoing basis representing the attacker’s activity over time.

Scalability and performance: Good
Bluepot is capable of handling multiple sessions. It is possible to attach multiple Bluetooth
adapters (sensors).

Reliability: Fair
There was a problem observed when the sent file has a very long name, which led to errors in
graphical user interface. Since the honeypot does not store attacks data on disk, all gathered
information is lost in the event of a software crash.

Extensibility: Fair
Bluepot honeypot is written in a popular programming language – Java. Its code is open
source, released under GNU GPL. Code itself is mostly commented, but there is virtually no
documentation. Architecture of the honeypot is not suited for extensions.

Ease of use and setting up: Good
The honeypot works out of the box (files need to be copied); there is no need of installation. It
has a graphical user interface, which is very easy to use, even when using it for the first time.
Both the configuration and operation of the tool is done on point-and-click basis. Almost all
parameters of the honeypot are configurable. Attacks are monitored and information about
them is displayed in GUI in near real-time. It is not possible to configure or use the honeypot
without graphical environment, i.e. using text user interface.

118
Proactive Detection of Security Incidents

Honeypots

Embeddability: Poor
Bluepot does not provide any interface to handle communication with other software. In
particular, it does not store information about incidents outside its graphical user interface.

Support: Poor
The most recent version was released in December 2010. There are unresolved issues in the
project’s bug tracker. There is a newsgroup, but it seems inactive.

Costs: High $$$
Deployment of the Bluepot honeypot requires both hardware resources, i.e. Bluetooth
adapter(s), as well as human supervision. The integration with other systems requires a major
effort. Support of the honeypot is poor.

Usefulness for CERTs: Not Useful
In most circumstances data gathered by the Bluepot is not relevant to everyday CERT work. In
our opinion, unless Bluetooth attacks become more common, usefulness for CERTs is rather
low, except in cases where a CERT is involved in Bluetooth research.

5.2.2.7 Sinkholes

Sinkholes have been grouped in the low-interaction server honeypot category for the purpose
of this study.

5.2.2.7.1 HoneySink

D
ET

EC
T

IO
N

SC
O

P
E

A
C

C
U

R
A

C
Y

O
F

EM
U

LA
TI

O
N

Q
U

A
LI

TY
 O

F

C
O

LL
EC

TE
D

 D
A

T
A

SC
A

LA
B

IL
IT

Y
 A

N
D

P
ER

FO
R

M
A

N
C

E

R
EL

IA
B

IL
IT

Y

EX
TE

N
SI

B
IL

IT
Y

EA
SE

 O
F

U
SE

A
N

D
 S

E
TT

IN
G

 U
P

EM
B

E
D

D
A

B
IL

IT
Y

SU
P

P
O

R
T

C
O

ST

U
SE

FU
LN

E
SS

 F

O
R

 C
ER

T

MULTI $$

Detection scope Rating Cost Usefulness for CERT

MULTI Multi-function Excellent $ Low Essential

 Good $$ Medium Useful

SPEC Specialised Fair $$$ High Not useful

 Poor

Version: 0.9.2

Date: May 2012

Testing time: 14 hours

Website: http://redmine.honeynet.org/projects/sinkhole

 https://honeynet.org/node/773

HoneySink is a tool that provides a mechanism for detection and monitoring of malware-
infected hosts (bots, zombie) on a given network. It uses a ‘sinkhole’ technique – based on

http://redmine.honeynet.org/projects/sinkhole
http://redmine.honeynet.org/projects/sinkhole
http://redmine.honeynet.org/projects/sinkhole
http://redmine.honeynet.org/projects/sinkhole
http://redmine.honeynet.org/projects/sinkhole
http://redmine.honeynet.org/projects/sinkhole
http://redmine.honeynet.org/projects/sinkhole
http://redmine.honeynet.org/projects/sinkhole
http://redmine.honeynet.org/projects/sinkhole
http://redmine.honeynet.org/projects/sinkhole
http://redmine.honeynet.org/projects/sinkhole
https://honeynet.org/node/773
https://honeynet.org/node/773
https://honeynet.org/node/773
https://honeynet.org/node/773
https://honeynet.org/node/773
https://honeynet.org/node/773
https://honeynet.org/node/773
https://honeynet.org/node/773

119

Proactive Detection of Security Incidents

Honeypots

redirection of all connections targeting known botnet servers to HoneySink. The tool emulates
DNS, FTP, HTTP and IRC servers, which are the most commonly used mechanisms for botnet
C&C or drop zone servers.

Detection scope: Multi-function
Only the services which are most frequently used for communication between a zombie (bot
infected node) and botnets’ C&C are emulated – namely DNS, FTP, HTTP and IRC.

Accuracy of emulation: Good
All services are emulated at a level that is sufficient for interaction with a zombie (bot infected
node). Emulation goes beyond the initial phase of the connection (for example: support for
basic IRC and FTP commands, basic HTTP response codes, handling mechanism for HTTP POST
and GET methods). However, the intention was not to emulate these typical services (in a
manner most similar to a real application), but only very niche/unique botnet-specific aspects
(for example: user has to define a FTP welcome banner in the configuration file). On the other
hand, despite correct handling of requests, the honeypot can be detected through in-depth
analysis of the responses or by sending a specially crafted request.

In case of DNS, HoneySink is fully functional as a local (or even public) resolver and DNS proxy
with DNS blackholing functionality.

Quality of collected data: Excellent
Metadata logged by HoneySink are rich and their range is configurable. Logging configuration
depends on the type of service. For example, for the HTTP service it includes REQUEST, HOST,
UserAgent and TIMEOUT; for the IRC protocol, the following events are included: CONNECT,
QUIT, JOIN, PART and PASS. HoneySink does not provide mechanisms for automatic
classification, but it is not required in the case of a sinkhole server since each connection
comes from an infected computer (zombie) by default. To fingerprint the operating system of
the connecting host, the honeypot uses an external tool: p0f.32

Scalability and performance: Good
The tool is designed to handle very large volumes of traffic (for example, in large corporate
networks or in the Internet, where HoneySink acts as a public DNS blackholing server). The
honeypot does not support parallel instances (no load balancing functionality). The tool is
written in C++.

Reliability: Excellent
No unexpected application termination or other problems were observed. In the official bug
tracker there are also no unresolved bugs.

32 http://lcamtuf.coredump.cx/p0f3/

http://lcamtuf.coredump.cx/p0f3/

120
Proactive Detection of Security Incidents

Honeypots

Extensibility: Fair
The architecture of HoneySink is not suited for extensions (no support for plugins). The tool is
written in C++ and the source code is open, but there are very few comments. Moreover,
there is no technical documentation available.

There is a possibility of a slight modification of functionality using the configuration file: for
example by redefining the action to be taken by the pseudo-HTTP server depending on the
source of the connection. The configuration file is well commented. However, the cost of
adapting the code for additional purposes (unforeseen by the developers) is high.

Ease of use and setting up: Fair
Installation of the tool is relatively difficult – the code must be compiled. The user has to
ensure all libraries and additional tools are on the system before making the installation.
Additionally, basic technical knowledge about DNS, HTTP, FTP and IRC is required

There is basic user documentation. The configuration is quite simple: it is well documented
and parameters are defined in one place without redundancy. All important parameters of the
honeypot are configurable.

The tool has neither a user interface nor a tool to generate statistics. All information is stored
in clear text files or MySQL database. According to the documentation, the MQueue
mechanism is also supported.

Embeddability: Good
HoneySink does not have any programming interface (API) that can be used for data
exchange. One can obtain the data by parsing text logs or retrieving from a MySQL database.
Additionally, Mqueue mechanism is supported. The range of data logged is fully configurable.

Support: Poor
Support is limited to the (basic) documentation and comments in the configuration file. There
is no community, and no active forms of support (mailing list, forum, etc.). The tool is still in
beta version (0.9.2), which was published in September 2011. It is probable that HoneySink
will not be developed or maintained in the future. The project was developed during the
Google Summer of Code 2011.33 There are three entries reported in September 2011 into the
official bug tracker, but there is no sign of any activity (no assigned developer).34

This evaluation may change if it turns out in the future that the project will be developed and
plans to release a stable version are announced.

33 http://www.google-melange.com/gsoc/project/google/gsoc2011/adam/5001

34 http://redmine.honeynet.org/projects/sinkhole/issues/report

http://www.google-melange.com/gsoc/project/google/gsoc2011/adam/5001
http://redmine.honeynet.org/projects/sinkhole/issues/report

121

Proactive Detection of Security Incidents

Honeypots

Costs: Medium $$
HoneySink is an open-source project distributed under GNU General Public Licence, but the
lack of technical documentation and comments in the code increases the cost of extending
and customisation. Using the tool without any modification is not expensive. The total
estimate of the cost is medium.

Usefulness for CERTs: Useful
HoneySink can be used as a detector of zombie computers on a LAN (for example in corporate
networks), or the Internet (acting as public service). From that point of view the tool can
provide useful information for a CERT, but only when the CERT has the ability (for example as
an ISP) to force its clients to (transparently) use the HoneySink as the main DNS server.

5.2.2.8 USB Honeypots

This section describes a new addition to the honeypot family – USB honeypots.

5.2.2.8.1 Ghost USB honeypot

D
ET

EC
T

IO
N

SC
O

P
E

A
C

C
U

R
A

C
Y

O
F

EM
U

LA
TI

O
N

Q
U

A
LI

TY
 O

F
C

O
LL

EC
TE

D
 D

A
T

A

SC
A

LA
B

IL
IT

Y
 A

N
D

P

ER
FO

R
M

A
N

C
E

R
EL

IA
B

IL
IT

Y

EX
TE

N
SI

B
IL

IT
Y

EA
SE

 O
F

U
SE

A
N

D
 S

E
TT

IN
G

 U
P

EM
B

E
D

D
A

B
IL

IT
Y

SU
P

P
O

R
T

C
O

ST

U
SE

FU
LN

E
SS

 F
O

R
 C

ER
T

SPEC N/A $$$

Detection scope Rating Cost Usefulness for CERT

MULTI Multi-function Excellent $ Low Essential

 Good $$ Medium Useful

SPEC Specialised Fair $$$ High Not useful

 Poor

Version: 0.2

Date tested: 10 September 2012

Testing time: 1 hour

Website: http://code.google.com/p/ghost-usb-honeypot/

Ghost is a honeypot for collecting Windows malware that spreads by removable storage, in
particular USB drives, developed as a part of the Google Summer of Code 2012 programme.
The software emulates plugging in a USB drive and records all writes to an image file. Any
modification of the image file is treated as indicator for infection.

Ghost can be considered a host-based intrusion detection system (HIDS), since it is meant to
be installed on production machines, not on dedicated hardware. It consists of a virtual bus
driver and emulated removable disks which are created on demand. Currently it is available
for Windows XP and Windows 7.

122
Proactive Detection of Security Incidents

Honeypots

Evaluation
Detection scope: Specialised
The solution focuses on threats spreading through USB drives only.

Accuracy of emulation: Good
Virtual drives are emulated on the level of the operating system and they appear exactly like
normal removable storage. If malware using such infection vector is present on the monitored
machine, mounting an image file should trigger its expected behaviour. While the presence of
the honeypot can be detected (name of the device and the driver are revealing), to date there
are no known malware attempts to evade it.

Quality of collected data: Fair
Apart from keeping the modified image file, Ghost provides basic information about processes
that wrote data to the drive, including their PID and the list of all loaded modules. No other
data is extracted automatically; specifically, the solution does not attempt to classify data
written to the virtual drive.

Scalability and performance: N/A
Unlike typical honeypots, Ghost is designed for installation as a HIDS on end-user production
machines. Since it runs only occasionally, it should not have a noticeable impact on the
performance of the machine.

Reliability: Good
During limited testing, only a single problem with the software was encountered: the
graphical interface ignored any changes to the image file (the text interface worked fine).

Extensibility: Fair
Ghost source code is written mostly in C, except the graphical interface which uses C#. The
software is available on GNU GPL version 3. Apart from build instructions, there is no
developer documentation for the honeypot. Modifications may require familiarity with
Windows driver development.

Ease of use and setting up: Good
Ghost is distributed with a graphical installer that simplifies setting up of the honeypot.
Additionally, the whole process is described on the official web page step by step. Installation
procedure on Windows XP includes downloading additional libraries, which do not seem to be
provided by Microsoft any longer. Configuration options of the honeypot are limited to
choosing paths to virtual disk images, but they have to be changed manually in Windows
registry. Once installed, Ghost can be controlled through graphical and command line
interfaces.

123

Proactive Detection of Security Incidents

Honeypots

Embeddability: Excellent
Entire low-level functionality of the honeypot (mounting drives and monitoring processes) is
handled by a single library, with a simple API. This library is used by both graphical and
command line interfaces, and provides a straightforward method for integrating the tool with
custom components.

Support: Fair
The Ghost project is hosted by the Honeynet Project but is quite new and has not gathered a
noticeable user community yet. At the time of writing it was still being actively developed,
with version 0.2 released on 4 September 2012. The official web page contains exhaustive
user documentation.

Costs: High $$$
The biggest advantage of using Ghost in an organisation is to deploy it on a large scale as a
HIDS. In order to accomplish this goal, it would have to be integrated with an existing IDS or a
new monitoring system would have to be created specifically for this purpose. Since Ghost
cannot be considered a mature project yet, development of such solution and its further
testing and support would probably require a significant amount of effort.

Usefulness for CERTs: Useful
A monitoring system leveraging Ghost functionality could complement other intrusion
detection systems within an organisation. The honeypot does not require any prior knowledge
of malware (e.g. signatures), so it could detect compromised machines that do not exhibit
other suspicious behaviour. Nevertheless, the high cost of deployment is a big obstacle in
adding this source of information.

124

Proactive Detection of Security Incidents

Honeypots

5.2.2.9 Summary of low-interaction server-side honeypots

NAME D
ET

EC
T

IO
N

SC
O

P
E

A
C

C
U

R
A

C
Y

O
F

EM
U

LA
TI

O
N

Q
U

A
LI

TY
 O

F

C
O

LL
EC

TE
D

 D
A

T
A

SC
A

LA
B

IL
IT

Y
 A

N
D

P
ER

FO
R

M
A

N
C

E

R
EL

IA
B

IL
IT

Y

EX
TE

N
SI

B
IL

IT
Y

EA
SE

 O
F

U
SE

A

N
D

 S
E

TT
IN

G
 U

P

EM
B

E
D

D
A

B
IL

IT
Y

SU
P

P
O

R
T

C
O

ST

U
SE

FU
LN

E
SS

 F
O

R
 C

ER
T

LOW-INTERACTION SERVER-SIDE HONEYPOTS

General purpose honeypots

Amun MULTI $
Dionaea MULTI $
KFsensor MULTI $$
Honeyd MULTI $
Honeytrap MULTI $$
Nepenthes MULTI $$
Tiny Honeypot MULTI $$

Web application honeypots

DShield Web Honeypot SPEC $$
Google Hack Honeypot SPEC $
Glastopf SPEC $

SSH Honeypots

Kippo SPEC $$
Kojoney SPEC $$$

SCADA Honeypots

SCADA HoneyNet Project MULTI $
SCADA HoneyNet (Digital Bond) MULTI $$

VoIP Honeypots

Artemisa SPEC $$
Bluetooth Honeypots

Bluepot SPEC $$$
Sinkholes

HoneySink MULTI $$
USB Honeypots

Ghost USB honeypot SPEC N/A $$$

125

Proactive Detection of Security Incidents

Honeypots

5.3 Client-side honeypots

Client-side honeypots have been grouped into low-interaction and high-interaction
variants.

5.3.1 Low-interaction client honeypots

Low-interaction client honeypots attempt to emulate real client applications.

5.3.1.1 HoneyC

D
ET

EC
T

IO
N

SC
O

P
E

A
C

C
U

R
A

C
Y

O
F

EM
U

LA
TI

O
N

Q
U

A
LI

TY
 O

F
C

O
LL

EC
TE

D
 D

A
T

A

SC
A

LA
B

IL
IT

Y
 A

N
D

P

ER
FO

R
M

A
N

C
E

R
EL

IA
B

IL
IT

Y

EX
TE

N
SI

B
IL

IT
Y

EA
SE

 O
F

U
SE

A
N

D
 S

E
TT

IN
G

 U
P

EM
B

E
D

D
A

B
IL

IT
Y

SU
P

P
O

R
T

C
O

ST

U
SE

FU
LN

E
SS

 F

O
R

 C
ER

T

SPEC $$

Detection scope Rating Cost Usefulness for CERT

MULTI Multi-function Excellent $ Low Essential

 Good $$ Medium Useful

SPEC Specialised Fair $$$ High Not useful

 Poor

Version: 1.3.0

Date tested: May 2012

Testing time: 12 hours

Website: https://projects.honeynet.org/honeyc

HoneyC is a low-interaction client honeypot that aims to identify malicious servers on the
web. It uses emulated clients that are able to solicit as much of a response from a server as is
necessary for analysis of malicious content. HoneyC is widely expandable: it can use different
visitor clients, search schemes, and analysis algorithms.

The honeypot is able to scan a provided list of URLs or get them from a query to Yahoo search
engine. HoneyC is written and distributed under the GNU General Public Licence.35

Evaluation
Detection scope: Specialised
HoneyC is designed to detect malicious web servers.

Accuracy of emulation: Poor
HoneyC implements standard HTTP requests; it does not interpret any scripting language. The
Honeypot can send a preconfigured User-Agent HTTP header.

35 http://www.gnu.org/licenses/gpl.html

https://projects.honeynet.org/honeyc
https://projects.honeynet.org/honeyc
https://projects.honeynet.org/honeyc
https://projects.honeynet.org/honeyc
https://projects.honeynet.org/honeyc
https://projects.honeynet.org/honeyc
https://projects.honeynet.org/honeyc
https://projects.honeynet.org/honeyc
https://projects.honeynet.org/honeyc
https://projects.honeynet.org/honeyc
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html

126

Proactive Detection of Security Incidents

Honeypots

Quality of collected data: Fair
The collected metadata is related to potential classification of events. Classification of
requests is done based on static rules in Snort format. Only three rules are provided with the
HoneyC distribution, and all of them are of poor quality and generate false positive results.
HoneyC also provides statistics of HTTP responses.

Scalability and performance: Fair
HoneyC is able to run in a specified number of concurrent threads. The tool is written in a
scripting language (Ruby), thus its performance is average. The tool is not designed to run
several instances simultaneously.

Reliability: Excellent
No problems were observed during the test and there is no sign that any may occur at a later
time.

Extensibility: Good
HoneyC is written in Ruby scripting language. The source code is clean, mostly commented
and released under GNU GPL. HoneyC has a modular architecture, which allows for creation of
additional modules (e.g. analysis engines). The project lacks technical documentation.

Ease of use and setting up: Good
The installation process is straightforward – it is enough to copy the honeypot’s files.

The configuration is spread across several XML files, located in different places. Many of
HoneyC’s aspects are configurable, e.g. User-Agent, number of threads, rules location.

Embeddability: Poor
HoneyC does not log results of analysis; it only prints information to standard output on the
console. The honeypot does not provide an application programming interface (API). The
automation of the honeypot’s processing would require a significant amount of work.

Support: Poor
The honeypot is neither developed nor supported; last release was in January 2008.

Costs: Medium $$
HoneyC is not being maintained, thus removing bugs or adding new features would require
significant workload.

Usefulness for CERTs: Not useful
Due to poor detection results (lack of JavaScript handling, no DOM implementation), as well
as the fact that the project is no longer being developed, HoneyC is considered not useful for
CERTs in everyday work.

127

Proactive Detection of Security Incidents

Honeypots

Figure 30: HoneyC in operation (screenshot)

128

Proactive Detection of Security Incidents

Honeypots

5.3.1.2 PHoneyC

D
ET

EC
T

IO
N

SC
O

P
E

A
C

C
U

R
A

C
Y

O
F

EM
U

LA
TI

O
N

Q
U

A
LI

TY
 O

F

C
O

LL
EC

TE
D

 D
A

T
A

SC
A

LA
B

IL
IT

Y
 A

N
D

P
ER

FO
R

M
A

N
C

E

R
EL

IA
B

IL
IT

Y

EX
TE

N
SI

B
IL

IT
Y

EA
SE

 O
F

U
SE

A
N

D
 S

E
TT

IN
G

 U
P

EM
B

E
D

D
A

B
IL

IT
Y

SU
P

P
O

R
T

C
O

ST

U
SE

FU
LN

E
SS

 F
O

R
 C

ER
T

MULTI $$

Detection scope Rating Cost Usefulness for CERT

MULTI Multi-function Excellent $ Low Essential

 Good $$ Medium Useful

SPEC Specialised Fair $$$ High Not useful

 Poor

Version: Revision 1631 from SVN repository

Date tested: May 2012

Testing time: 12 hours

Website: http://code.google.com/p/phoneyc/

PHoneyC is a low-interaction client honeypot. It implements its own Document Object Model
(DOM) and executes JavaScript through Spidermonkey.36 Since it uses dynamic analysis, it is
able to remove obfuscation from many malicious websites. The honeypot emulates specific
vulnerabilities in order to determine the attack vector. PHoneyC uses libemu to detect
shellcodes and heapspray.

Evaluation
Detection scope: Multi-function
The honeypot is able to detect shellcodes and heapspray, malicious JavaScript as well as
malicious ActiveX objects embedded in the website. PHoneyC also analyses PDF files, but only
in a very basic scope, insufficient for detection of modern exploits.

Accuracy of emulation: Good
PHoneyC implements a full browser’s DOM and uses the Spidermonkey engine to execute
JavaScript. It also emulates vulnerable ActiveX objects. The honeypot is able to identify itself
as one of several predefined versions of Internet Explorer running on Microsoft Windows XP.

Quality of collected data: Good
The honeypot provides rich and easy-to-analyse metadata. Detected threats are classified
using predefined rules. Classification is performed with matching ActiveX CLSID to a set of
Python’s objects that define known exploits. PHoneyC is able to download and analyse files
found during initial scanning.

36 https://developer.mozilla.org/en-US/docs/SpiderMonkey

http://code.google.com/p/phoneyc/
http://code.google.com/p/phoneyc/
http://code.google.com/p/phoneyc/
http://code.google.com/p/phoneyc/
http://code.google.com/p/phoneyc/
http://code.google.com/p/phoneyc/
http://code.google.com/p/phoneyc/
http://code.google.com/p/phoneyc/
http://code.google.com/p/phoneyc/
http://code.google.com/p/phoneyc/
http://code.google.com/p/phoneyc/
http://code.google.com/p/phoneyc/
http://code.google.com/p/phoneyc/
https://developer.mozilla.org/en-US/docs/SpiderMonkey

129

Proactive Detection of Security Incidents

Honeypots

Scalability and performance: Poor
PHoneyC can handle one connection at a time. The tool is written in a scripting language, thus
its performance is average.

Reliability: Fair
Some problems, i.e. unhandled exceptions, were observed when analysing PDF files. The
errors occur also when PHoneyC is not able to download a file, e.g. when a host’s name
cannot be resolved. The honeypot is not designed to run continuously.

Extensibility: Good
The honeypot’s code is open source and released under GNU GPL, written in a popular
programming language – Python. Code is scarcely commented and there is no technical
documentation. PhoneyC does not have a modular architecture as such, but adding new so-
called vulnerability modules is easy.

Ease of use and setting up: Good
Installation of PHoneyC itself is straightforward and well documented. However, installation
of its dependencies, e.g. libemu, requires some technical knowledge. Besides built-in help,
there is no user documentation, but the honeypot is easy to use. PHoneyC provides a
command line user interface.

Embeddability: Fair
Information about discovered threats is logged to a text file in non-standard format. PHoneyC
does not provide an application programming interface. Automation of management of the
honeypot is possible, but requires additional work.

Support: Fair
Last change in source code was committed to repository on 17 January 2011. There is a
newsgroup as well as a support channel on an IRC network. The honeypot does not seem to
be in development any longer, but there is an active community around the project.

Costs: Medium $$
PHoneyC is not being actively developed, thus removing bugs or adding new features would
require significant workload.

Usefulness for CERTs: Useful
PHoneyC is a helpful experimental tool to determine whether a website is malicious or not. It
provides useful information when verifying the maliciousness of a given URL. However, it does
not scale well enough to be used to scan for malicious URLs ‘in the wild’.

130

Proactive Detection of Security Incidents

Honeypots

Figure 31: PHoneyC in operation (screenshot)

131

Proactive Detection of Security Incidents

Honeypots

5.3.1.3 Monkey-Spider

D
ET

EC
T

IO
N

SC

O
P

E

A
C

C
U

R
A

C
Y

O
F

EM
U

LA
TI

O
N

Q
U

A
LI

TY
 O

F

C
O

LL
EC

TE
D

 D
A

T
A

SC
A

LA
B

IL
IT

Y
 A

N
D

P
ER

FO
R

M
A

N
C

E

R
EL

IA
B

IL
IT

Y

EX
TE

N
SI

B
IL

IT
Y

EA
SE

 O
F

U
SE

A
N

D
 S

E
TT

IN
G

 U
P

EM
B

E
D

D
A

B
IL

IT
Y

SU
P

P
O

R
T

C
O

ST

U
SE

FU
LN

E
SS

 F
O

R
 C

ER
T

SPEC $$$

Detection scope Rating Cost Usefulness for CERT

MULTI Multi-function Excellent $ Low Essential

 Good $$ Medium Useful

SPEC Specialised Fair $$$ High Not useful

 Poor

Version: 0.2

Date tested: June 2012

Testing time: 12 hours

Website: http://monkeyspider.sourceforge.net/

Monkey-Spider is a crawler-based low-interaction client honeypot. The Monkey-Spider uses
Heritrix37 web crawler to save web pages and then scans them using Clam AntiVirus.38 The
whole process is not automatic.

Evaluation
Detection scope: Specialised
Monkey-Spider detects worms, viruses, and phishing on websites.

Accuracy of emulation: Poor
Since the honeypot uses Heritrix to crawl websites, it does not emulate a real browser
properly. In particular, there is no support for any kind of scripting language.

Quality of collected data: Poor
The honeypot does not classify websites itself – it uses an external tool, i.e. ClamAV, to find
malware. Information about identified threats is stored in a database. Since it uses an anti-
virus to detect malicious websites, the detection rate is low, especially when it comes to new
variants of exploits or 0-day vulnerabilities.

Scalability and performance: Good
Monkey-Spider employs an external tool for crawling websites (Heritrix), as well as to analyse
files (ClamAV). Heritrix requires significant amount of resources, especially memory. It can
handle multiple simultaneous sessions.

37 https://webarchive.jira.com/wiki/display/Heritrix/Heritrix

38 http://www.clamav.net/

http://monkeyspider.sourceforge.net/index.html
http://monkeyspider.sourceforge.net/index.html
http://monkeyspider.sourceforge.net/index.html
http://monkeyspider.sourceforge.net/index.html
http://monkeyspider.sourceforge.net/index.html
http://monkeyspider.sourceforge.net/index.html
http://monkeyspider.sourceforge.net/index.html
http://monkeyspider.sourceforge.net/index.html
http://monkeyspider.sourceforge.net/index.html
https://webarchive.jira.com/wiki/display/Heritrix/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix/Heritrix
http://www.clamav.net/
https://webarchive.jira.com/wiki/display/Heritrix/Heritrix
http://www.clamav.net/

132

Proactive Detection of Security Incidents

Honeypots

Reliability: Excellent
The tool consists of simple scripts, which process files previously downloaded to disk. It does
not run in an automated manner. There were no problems observed during testing.

Extensibility: Fair
Monkey-Spider was released under GPL. It was written in a popular scripting language –
Python. It is possible to extend the honeypot through creation of additional plugins
(scanners), but this process would require modification of existing code and it is not
documented. There is no API provided for potential plugins.

Ease of use and setting up: Fair
There are software requirements which have to be met in order to install and use the
honeypot. These include the Heritrix web crawler, Clam anti-virus39 and PostgreSQL database.
Heritrix has to be configured prior to the first run. Installation of Monkey-Spider itself is as
simple as running the provided install script. There is one configuration file and its format is
easy to understand. User documentation is provided, but it is incomplete.

Embeddability: Poor
The honeypot’s logging functionality is very limited. It stores data in a PostgreSQL database,
but only if a potential threat is detected. The automation of the scanning process would
require a significant amount of work.

Support: Poor
The project is no longer developed; last release was in March 2009. There is a mailing list, but
it seems to be inactive. There is no active community around the project.

Costs: High $$$
Monkey-Spider is not maintained, thus removing bugs or adding new features would
constitute a significant workload.

Usefulness for CERTs: Not useful
The quality of collected data is very low. Furthermore, the Monkey-Spider is not active in
terms of either development or support. Since the overall quality of the project is low, it is not
useful for a CERT in everyday work.

39 http://www.clamav.net

http://www.clamav.net/

133

Proactive Detection of Security Incidents

Honeypots

5.3.1.4 Thug

D
ET

EC
T

IO
N

SC
O

P
E

A
C

C
U

R
A

C
Y

O
F

EM
U

LA
TI

O
N

Q
U

A
LI

TY
 O

F

C
O

LL
EC

TE
D

 D
A

T
A

SC
A

LA
B

IL
IT

Y
 A

N
D

P
ER

FO
R

M
A

N
C

E

R
EL

IA
B

IL
IT

Y

EX
TE

N
SI

B
IL

IT
Y

EA
SE

 O
F

U
SE

A
N

D
 S

E
TT

IN
G

 U
P

EM
B

E
D

D
A

B
IL

IT
Y

SU
P

P
O

R
T

C
O

ST

U
SE

FU
LN

E
SS

 F
O

R
 C

ER
T

MULTI $$

Detection scope Rating Cost Usefulness for CERT

MULTI Multi-function Excellent $ Low Essential

 Good $$ Medium Useful

SPEC Specialised Fair $$$ High Not useful

 Poor

Version: 0.4.3 (commit 1fe07f6)

Date tested: June 2012, revised August 2012

Testing time: 2 days

Website: https://github.com/buffer/thug

Thug is a low-interaction client honeypot focused on detection of malicious web pages. It
emulates the behaviour of a web browser. The tool uses Google V8 Javascript engine and
implements its own Document Object Model (DOM). The most important and unique features
of Thug are: the ActiveX controls handling module (vulnerability module), and static + dynamic
analysis capabilities (using Abstract Syntax Tree and Libemu shellcode analyser).

Thug is written in Python under GNU General Public Licence.

Evaluation
Detection scope: Multi-function
Thug is a tool that emulates a web browser and its plugins. It focuses on threats that spread
through malicious web pages.

Accuracy of emulation: Good
The quality of emulation of a web browser is very good, but not perfect. In most cases the tool
looks identical to the web browser and properly handles and executes JavaScripts,
redirections and ActiveX objects. It uses several browser personalities (user agents). During
tests no false positives were observed. However, from time to time the honeypot performs a
double request with different ‘referrer’ values – this might be used by a malicious site to
detect the honeypot. Some ‘heavy’ web pages (with complex content) are able to terminate
the tool, probably due to custom (implemented) DOM. The analysis is not completed in such a
case and this could generate false negatives.

Quality of collected data: Good
The tool provides quite rich metadata, including in particular all HTML content together with
decoded JavaScript, detailed ActiveX code, redirections and captured binary files. It uses

https://github.com/buffer/thug
https://github.com/buffer/thug
https://github.com/buffer/thug
https://github.com/buffer/thug
https://github.com/buffer/thug
https://github.com/buffer/thug
https://github.com/buffer/thug
https://github.com/buffer/thug
https://github.com/buffer/thug
https://github.com/buffer/thug

134

Proactive Detection of Security Incidents

Honeypots

Libemu shellcode analyser. Metadata are correct and easy to analyse. However, no automatic
classification is provided. Also, some other basic metadata are not provided (for example, an
IP address of the HTTP server). False negatives are possible.

Scalability and performance: Fair
It is possible to run multiple simultaneous sessions on a single server, but the throughput is
average. The tool is written in Python script language, so performance can be an issue.
Moreover, Thug generates a relatively high CPU load.

Reliability: Fair
Some issues concerning stability were observed: unexpected termination of the script when
processing websites with ‘heavy’ content (many complex JavaScripts, or other objects). Thug
requires custom monitoring procedures. The tool creates a single session per web page, so
termination of one analysis does not affect other instances.

Extensibility: Good
The tool has support for plugins (modular architecture). The source code is open and uses
Python, which is a popular scripting language. There is some basic yet helpful documentation
for the developers. However, the code has few comments. Customisation of the honeypot is
possible.

Ease of use and setting up: Good
Installation of the tool is quite difficult and requires technical knowledge. The user has to
ensure all dependencies, libraries, etc. Many of these require compilation of source code. The
installation of the components is quite complicated – for example Google V8 JavaScript engine
requires patching its code in order to work with the Python wrapper. Note that this is not a
Thug issue, but rather a bug in the V8 engine and an appropriate patch is provided with Thug.
All installation procedures are clearly specified in Thug’s documentation. When the
installation procedure is completed, the tool is easy to use. It has a basic command line
interface and the level of details printed to standard output is configurable. The honeypot logs
its actions. The results of analysis may be stored in plain text files, MITRE MAEC logging
format (XML with defined schema), MongoDB, or sent via HPFeeds.40 Users can analyse ‘live’
web pages or locally stored HTML files. The tool does not require setting any advanced
configuration parameters – only for optional logging methods or plugins. All parameters are
stored in flat text files. The user documentation is good and helpful.41 Thug's code is under
active development (several commits per day) and both installation process and

40 http://redmine.honeynet.org/projects/hpfeeds/wiki

41 http://buffer.github.com/thug/doc/index.html

http://redmine.honeynet.org/projects/hpfeeds/wiki
http://buffer.github.com/thug/doc/index.html

135

Proactive Detection of Security Incidents

Honeypots

documentation are continuously improving. Users have to check the newest version on git
repository.42

Embeddability: Good
Thug does not provide any API, but URLs to analyse are submitted via command line
parameters. Output data is generated in plain text files, XML (MITRE MAEC logging format), or
stored in MongoDB. Results can also be sent via HPFeeds (push technology). Automation of
management and controlling of the honeypot is quite straightforward. The overall
embeddability of the Thug is good.

Support: Excellent
The honeypot is actively developed. New features are planned. The existing documentation is
good. In case of a problem the community appears helpful (mailing list, direct contact to
author, etc).

Costs: Medium $$
Thug is an open-source project under GNU General Public Licence, version 2. The overall cost
of deployment in a typical environment is moderate. The tool is still under development, so it
is expected that costs may fall when accuracy of emulation, reliability or performance
improves.

Usefulness for CERTs: Essential
Thug offers quick and easy ability of analysing web pages in order to assess their potential
malignancy. It provides valuable and detailed information. It is still a work in progress, so it
cannot be expected to be used fully in a production environment, but nevertheless it
constitutes a good support tool.

42 https://github.com/buffer/thug.git

https://github.com/buffer/thug.git

136

Proactive Detection of Security Incidents

Honeypots

Figure 32: Thug in operation (screenshot)

137

Proactive Detection of Security Incidents

Honeypots

5.3.1.5 Summary

NAME D
ET

EC
T

IO
N

SC
O

P
E

A
C

C
U

R
A

C
Y

O
F

EM
U

LA
TI

O
N

Q
U

A
LI

TY
 O

F

C
O

LL
EC

TE
D

 D
A

T
A

SC
A

LA
B

IL
IT

Y
 A

N
D

P
ER

FO
R

M
A

N
C

E

R
EL

IA
B

IL
IT

Y

EX
TE

N
SI

B
IL

IT
Y

EA
SE

 O
F

U
SE

A
N

D
 S

E
TT

IN
G

 U
P

EM
B

E
D

D
A

B
IL

IT
Y

SU
P

P
O

R
T

C
O

ST

U
SE

FU
LN

E
SS

 F
O

R
 C

ER
T

LOW-INTERACTION CLIENT-SIDE HONEYPOTS

HoneyC SPEC $$
PHoneyC MULTI $$
Monkey-Spider SPEC $$$
Thug MULTI $$

Legend:
Detection scope Rating Cost Usefulness for CERT

MULTI Multi-function Excellent $ Low Essential

 Good $$ Medium Useful

SPEC Specialised Fair $$$ High Not useful

 Poor

138

Proactive Detection of Security Incidents

Honeypots

5.3.2 High-interaction client honeypots

High-interaction client honeypots use real operating systems to detect and analyse
attacks against client applications.43

5.3.2.1 Argos

Argos (see section 5.2.1.1) can also be used as a high-interaction client honeypot.

5.3.2.2 Capture-HPC NG

D
ET

EC
TI

O
N

SC

O
P

E

Q
U

A
LI

TY
 O

F
C

O
LL

E
CT

ED
 D

A
TA

SC
A

LA
B

IL
IT

Y
A

N
D

P

ER
FO

R
M

A
N

C
E

R
EL

IA
B

IL
IT

Y

EX
TE

N
SI

B
IL

IT
Y

EA
SE

 O
F

U
SE

A

N
D

 S
ET

TI
N

G
 U

P

EM
B

ED
D

A
B

IL
IT

Y

SU
P

P
O

R
T

C
O

ST

U
SE

FU
LN

ES
S

 F

O
R

 C
ER

T

MULTI $$

Detection scope Rating Cost Usefulness for CERT

MULTI Multi-function Excellent $ Low Essential

 Good $$ Medium Useful

SPEC Specialised Fair $$$ High Not useful

 Poor

Version tested: repository latest version

Date tested: 1 June 2012

Testing time: 24 hours

Website: http://pl.honeynet.org/HoneySpiderNetworkCapture

Capture-HPC NG is a high-interaction client honeypot framework. It identifies malicious
servers by interacting with them using a dedicated virtual machine and observing its system
for unauthorised state changes. Capture-HPC NG is a modified version of the original Capture-
HPC,44 developed within the scope of the ‘HoneySpider Network‘ project and available under
GPL 2.0 licence. About half of the code was rewritten and several new features were added to
the latest release.

Evaluation
Detection scope: Multi-function
The honeypot can detect various attacks against client applications. Its main purpose is to
detect attacks against web browsers, but installing additional software, i.e. PDF readers, Flash

43 At the very end of study, a new high-interaction client honeypot MCEDP was released by the Honeynet Project (Iran
Chapter). Unfortunately this was too late to be tested and reviewed. Interested readers can see
http://www.irhoneynet.org/?page_id=116

44 The original Capture-HPC software is available at https://projects.honeynet.org/capture-hpc

http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://www.google.com/url?q=http%3A%2F%2Fpl.honeynet.org%2FHoneySpiderNetworkCapture&sa=D&sntz=1&usg=AFQjCNHfQPQtczGpQpX_QRqFMkoco4ll6w
http://www.google.com/url?q=http%3A%2F%2Fpl.honeynet.org%2FHoneySpiderNetworkCapture&sa=D&sntz=1&usg=AFQjCNHfQPQtczGpQpX_QRqFMkoco4ll6w
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://pl.honeynet.org/HoneySpiderNetworkCapture
http://www.irhoneynet.org/?page_id=116
https://projects.honeynet.org/capture-hpc

139

Proactive Detection of Security Incidents

Honeypots

players, office document readers, etc., extends its capability to detect attacks against these
applications as well. The requirement is that the installed software has to contain a web
browser plugin allowing it to handle a specific document type. If configured properly, the
honeypot is able to detect unknown attacks (including 0day exploits).

Accuracy of emulation: Does not apply
This high-interaction honeypot uses real software in a real (virtualised) operating system, thus
accuracy of emulation does not apply.

Quality of collected data: Good
The honeypot collects information about events in a virtualised Windows operating system,
which are observed when visiting a given URL suspected of malicious behaviour. Collected
data include: file system modifications, invoked and killed processes, and registry changes.
Log files include information about date and time of any observed event, the origin of that
event (process name), type of change (e.g. writing or deleting a file, changing a registry key)
and location where the change occurred (e.g. path to a modified file). All observed events are
filtered against user-defined white and black lists which define benign and malicious
behaviour. The lists are based on regular expressions. If an event is not defined on white-lists,
it is considered malicious and reported to a server working outside of the virtualised
environment. The event is logged and the sample (URL) is classified as malicious. In the case of
file system changes, all modified files, including deleted ones, are zipped and downloaded
from the virtual machine for later analysis.

Because of the simple nature of the honeypot analysis (implementation of white/black lists),
the honeypot is prone to false-positive classifications. Nevertheless the honeypot gives
enough reliable information to determine steps that the malware took in the process of
infecting the operating system.

Scalability and performance: Good
Capture-HPC NG allows for the analysis of multiple URLs at the same time. The throughput of
the honeypot is limited by the number of concurrently running virtual machines and
configured time for URL classification (time per website visit). The honeypot does not provide
any solution to ease horizontal scaling, but with a bit of effort scaling is possible.

Reliability: Good
Capture-HPC NG is relatively stable under heavy load. Problems, if any, usually come from the
virtual environment being used as back-end (VirtualBox, KVM). The software can be run for
several days without maintenance and no specialised tools are needed to perform
management and configuration tasks.

Extensibility: Poor

140

Proactive Detection of Security Incidents

Honeypots

The honeypot is not extendable, meaning it cannot perform other analysis beyond monitoring
the operating system. Also it cannot be easily extended with additional methods of exporting
gathered data.

Ease of use and setting up: Fair
The honeypot, and the virtualisation back-end in particular, can be somewhat difficult to set
up correctly, but later usage is easy and straightforward. The software does not have any GUI,
nor does it provide any special tools for interaction. It communicates with the user via log files
only. Configuration of the honeypot is done by editing simply structured XML files. The log
files from the honeypot are all text-based and easy to understand. The honeypot can take
URLs for analysis either from an input text file or via its command interface, which is a simple
socket listening for connections and commands. Telnet can be used for issuing commands.
Only two commands are available: addurl and reload (the latter rereads exclusion lists and
sends them to virtual machines).

Embeddability: Fair
Capture-HPC NG provides only log files as an output interface for communication with other
solutions. The honeypot’s API is very primitive – limited to listening on a port and waiting for
commands. Format of the log files is not standard but it is easy to parse and process, so
writing a custom integration tool is not difficult. Automatic monitoring of the honeypot can be
difficult and requires additional software.

Support: Fair
The tool was released in December 2011 by CERT Polska and is no longer developed, but
authors of the original Capture-HPC plan to integrate both versions into one solution. There is
a community gathered around the original Capture-HPC (through a mailing list) and its new
version Capture-HPC NG, but it is not very active. It consists mainly of Honeynet Project
members and academic researchers. The documentation provided with the ‘NG’ version is
sufficient for successful installation and configuration, but does not give any ideas on how the
integration process can take place, leaving it for the user to solve. In case of problems users
may contact the authors directly or subscribe to the mailing list.

Costs: Medium $$
The costs of deploying Capture-HPC NG can be considered moderate especially when taking
into account the time needed to properly configure the exclusion lists. Unfortunately, each
deployment of Capture-HPC is unique in nature and creating a single, universal set of
exclusion lists is hard if not impossible. Aside from that, the software is free, open-source, and
can be modified at will.

Usefulness for CERTs: Useful
Capture-HPC NG can be useful for CERTs which perform active monitoring of websites, to
quickly assess their potential threat. False positives may occur.

141

Proactive Detection of Security Incidents

Honeypots

Figure 33: Capture-HPC NG in operation (screenshot)

5.3.2.3 Shelia

D
ET

EC
TI

O
N

SC

O
P

E

Q
U

A
LI

TY
 O

F
C

O
LL

E
CT

ED
 D

A
TA

SC
A

LA
B

IL
IT

Y
A

N
D

P

ER
FO

R
M

A
N

C
E

R
EL

IA
B

IL
IT

Y

EX
TE

N
SI

B
IL

IT
Y

EA
SE

 O
F

U
SE

A

N
D

 S
ET

TI
N

G
 U

P

EM
B

ED
D

A
B

IL
IT

Y

SU
P

P
O

R
T

C
O

ST

U
SE

FU
LN

ES
S

 F

O
R

 C
ER

T

MULTI $$

Detection scope Rating Cost Usefulness for CERT

MULTI Multi-function Excellent $ Low Essential

 Good $$ Medium Useful

SPEC Specialised Fair $$$ High Not useful

 Poor

Version tested: 1.2.1

Date tested: 11 June 2012

Testing time: 48 hours

Website: http://www.cs.vu.nl/~herbertb/misc/shelia/

Shelia is a high-interaction client honeypot which emulates a naive user – one that opens
every email attachment, clicks every link, etc. Whenever Shelia detects a malicious website or
attachment, it raises an alarm. Shelia differs in its approach to detecting malicious activity
from typical honeypot solutions. Unlike others, it does not track changes in the operating

http://www.cs.vu.nl/~herbertb/misc/shelia/
http://www.cs.vu.nl/~herbertb/misc/shelia/
http://www.cs.vu.nl/~herbertb/misc/shelia/
http://www.cs.vu.nl/~herbertb/misc/shelia/
http://www.cs.vu.nl/~herbertb/misc/shelia/
http://www.cs.vu.nl/~herbertb/misc/shelia/
http://www.cs.vu.nl/~herbertb/misc/shelia/
http://www.cs.vu.nl/~herbertb/misc/shelia/
http://www.cs.vu.nl/~herbertb/misc/shelia/
http://www.cs.vu.nl/~herbertb/misc/shelia/
http://www.cs.vu.nl/~herbertb/misc/shelia/
http://www.cs.vu.nl/~herbertb/misc/shelia/
http://www.cs.vu.nl/~herbertb/misc/shelia/
http://www.cs.vu.nl/~herbertb/misc/shelia/
http://www.cs.vu.nl/~herbertb/misc/shelia/
http://www.cs.vu.nl/~herbertb/misc/shelia/

142

Proactive Detection of Security Incidents

Honeypots

system, but observes the origin of an activity. The main idea is to detect execution of code
from areas in memory that should not be executable.

Shelia processes entries from its database, which facilitates integration of the honeypot with
other solutions. All the result information is also stored in the database, which can be
accessed directly or via WAPI (WOMBAT API).45

Evaluation
Detection scope: Multi-function
Shelia was built to detect various attacks against client applications, especially web browsers.
The scope of detection depends on the configuration of the honeypot and the environment it
operates in. Apart from checking the maliciousness of a website, Shelia is able to analyse a
suspicious file’s behaviour in a virtualised operating system by launching the file itself (if it is a
binary) or an associated reader application.

Accuracy of emulation: Does not apply
This high-interaction honeypot uses real software in a real (virtualised) operating system, thus
accuracy of emulation does not apply to it.

Quality of collected data: Good
The honeypot collects vast amounts of data containing information about behaviour of the
observed client application. The data describes various actions that the application
performed, including names of invoked system calls with arguments, information on whether
an exploit was detected as well as a dump of a payload. Additionally, the honeypot preserves
malware that was obtained during analysis. Shelia raises an alarm when it detects an
invocation of payload and stores information related to it in a database. Shelia has virtually no

45 The WAPI can easily be used to enable access to any dataset. It is available under a BSD licence at:
http://sourceforge.net/projects/wombat-api/

http://sourceforge.net/projects/wombat-api/

143

Proactive Detection of Security Incidents

Honeypots

false positives, but the detection method it uses can miss some types of attacks (false
negatives).

Scalability and performance: Poor
Shelia is packaged with Python scripts responsible for managing the honeypot. Those scripts
are designed to handle only one running instance at a time. Only through substantial effort is
it possible to redesign the scripts in order to handle multiple simultaneous instances of the
honeypot. The performance of the honeypot depends on its configuration, especially the time
in which honeypot performs analysis. Typically it takes about 40 seconds to a minute to
analyse a sample, depending on whether the honeypot observed malicious activity. In this
case it waits a predefined time allowing malware to perform additional actions on the
infected operating system.

Reliability: Good
The honeypot performed in a stable manner during the entire testing period and no
performance issues were observed. It is likely that in a multi-instance environment some
performance issues may occur, but they would be related to running many instances of virtual
machines rather than performance. Nevertheless, the honeypot never returned broken or
incomplete data.

Extensibility: Poor
Shelia does not provide any API and cannot be easily extended to perform additional analysis
aside from monitoring a client application for misbehaviour.

Ease of use and setting up: Fair
The process of setting up Shelia consists of several steps and is not trivial. There is a simple
how-to document delivered with the honeypot, but not all steps are thoroughly explained. It
involves creating a virtual machine with Windows operating system, setting up an FTP server
for file transfer between VM and host machine, and creating a MySQL database for storing
data. All these steps are required for automating the analysis of files and URLs. Configuration
is stored in plain text files with easy to understand parameters, limited to just the most
important ones. It is possible that some specific deployments will require modification of
Python management scripts shipped with the honeypot.

Usage of the honeypot is reduced to populating a database with URLs or files to analyse.
Obtaining results is also reduced to connecting to the database and retrieving data with
custom queries.

Embeddability: Good
Shelia can be embedded into other systems via integration with a database which becomes a
front-end for supplying files and URLs for analysis and gathering results. The database schema
is simple and easy to understand, so an integration process should not take much time. The

144

Proactive Detection of Security Incidents

Honeypots

honeypot is managed by a set of Python scripts, which ensure that the classification process
runs automatically and without much attention from the operator.

145

Proactive Detection of Security Incidents

Honeypots

Support: Fair
The honeypot development stopped in 2009. There is no mailing list or direct contact
information available on the project web page. The documentation is limited but sufficient to
successfully set the honeypot up with a bit of effort.

Costs: Medium $$
Shelia is freely available for download and use. Additional costs may be associated with the
time needed to set it up and integrate with other CERT systems and licences of additional
software that the organisation will want to monitor using Shelia.

Usefulness for CERTs: Useful
Shelia can provide interesting information for CERTs which aim at detecting attacks against
client software used in their constituency or organisation. However, it should be viewed as an
experimental tool.

5.3.2.4 Trigona

D
ET

EC
TI

O
N

SC

O
P

E

Q
U

A
LI

TY
 O

F
C

O
LL

E
CT

ED
 D

A
TA

SC
A

LA
B

IL
IT

Y
A

N
D

P

ER
FO

R
M

A
N

C
E

R
EL

IA
B

IL
IT

Y

EX
TE

N
SI

B
IL

IT
Y

EA
SE

 O
F

U
SE

A

N
D

 S
ET

TI
N

G
 U

P

EM
B

ED
D

A
B

IL
IT

Y

SU
P

P
O

R
T

C
O

ST

U
SE

FU
LN

ES
S

 F

O
R

 C
ER

T

MULTI $$$

Detection scope Rating Cost Usefulness for CERT

MULTI Multi-function Excellent $ Low Essential

 Good $$ Medium Useful

SPEC Specialised Fair $$$ High Not useful

 Poor

Version tested: 1.0

Date tested: 25 June 2012

Testing time: 48 hours

Website: http://honeynet.org.au/?q=node/63

Trigona is a mixture of a high-interaction honeypot visiting URLs in a virtualised environment
and a specialised tool allowing analysis of PCAP files. Its operation is based on the VirtualBox
virtualisation system. Trigona allows for bulk URL processing with high throughput and stores
extracted information in a MySQL database. The tool aims to find malicious websites, exploit
kits, malware binaries, etc. in the captured network stream by post-mortem analysis and
correlation.

146

Proactive Detection of Security Incidents

Honeypots

Evaluation
Detection scope: Multi-purpose
Trigona can be used to detect attacks against web browsers and browser plugins.

Accuracy of emulation: Does not apply
This high-interaction honeypot uses real software in a real (virtualised) operating system, thus
accuracy of emulation does not apply to it.

Quality of collected data: Poor
The basic functionality of Trigona allows for creation of a PCAP file with network traffic
generated by visiting a given set of URLs. The PCAP file can subsequently be processed offline
by an additional tool delivered with Trigona to extract malware. Unfortunately, the tool was
not able to retrieve valuable data from various PCAP files created while visiting malicious
URLs. The honeypot does not assign any classification to observed traffic.

Scalability and performance: Excellent
The tool can be easily configured to support cooperation of multiple instances. It can handle
large volumes of URLs and its performance stays at a fairly high level during all operation time.

Reliability: Good
Trigona was stable during tests. Some problems were caused by VirtualBox but they were not
severe. The honeypot requires minimal supervision and occasional problems do not cause
data loss or corruption.

Extensibility: Fair
Trigona is coded in the Perl language, making modifications and extending the code possible.
This is hindered by lack of code documentation or comments. Trigona does not support
plugins.

Ease of use and setting up: Poor
Installation of the Trigona honeypot is reduced to unpacking the archive and copying files into
user-defined locations. The most difficult part is setting up the honeypot and installing all
necessary dependencies from CPAN46 and system repository of packages. The procedure is
documented, but a number of critical steps are left out, additionally complicating the process.
There is no typical configuration file for the honeypot, and some parameters have to be set
directly in Perl source files (e.g. username and password for the database access). There is no
user interface other than the output from Trigona scripts. There is also no tool for monitoring
whether the honeypot is operational.

46 The Comprehensive Perl Archive Network – www.cpan.org

http://www.cpan.org/

147

Proactive Detection of Security Incidents

Honeypots

Embeddability: Poor
The honeypot does not provide any API for communication with other tools. It uses a MySQL
database for storing some information but does not provide any mechanism for notification
about when processing has completed. There is no automation of processing aside from
visiting a set of URLs and creating a PCAP file from network traffic observed during that time.
The malware extraction process has to be performed manually by running the appropriate
Perl script file on a previously created PCAP file. Automation of that process should be easy to
implement.

Support: Poor
It seems that development of the honeypot has been stopped and it is no longer maintained.
Trigona was created by the Australian Chapter of the Honeynet Project and some support can
perhaps be sought through this group.

Costs: High $$$
Costs of eventual deployment are considered high, mainly because of the amount of time and
work needed for successful configuration and integration with other systems, which may
require Trigona source code modifications.

Usefulness for CERTs: Not useful
Trigona does not provide much added value in comparison to other available and maintained
tools.

Figure 34: Trigona in operation (screenshot)

148

Proactive Detection of Security Incidents

Honeypots

5.3.2.5 Summary of high-interaction client honeypots

NAME D
ET

EC
T

IO
N

SC

O
P

E

Q
U

A
LI

TY
 O

F

C
O

LL
EC

TE
D

 D
A

T
A

SC
A

LA
B

IL
IT

Y
 A

N
D

P
ER

FO
R

M
A

N
C

E

R
EL

IA
B

IL
IT

Y

EX
TE

N
SI

B
IL

IT
Y

EA
SE

 O
F

U
SE

A
N

D
 S

E
TT

IN
G

 U
P

EM
B

E
D

D
A

B
IL

IT
Y

SU
P

P
O

R
T

C
O

ST

U
SE

FU
LN

E
SS

 F

O
R

 C
ER

T

HIGH-INTERACTION CLIENT-SIDE HONEYPOTS

Capture-HPC NG MULTI $$
Shelia MULTI $$
Trigona MULTI $$$

Legend:

Detection scope Rating Cost Usefulness for CERT

MULTI Multi-function Excellent $ Low Essential

 Good $$ Medium Useful

SPEC Specialised Fair $$$ High Not useful

 Poor

149

Proactive Detection of Security Incidents

Honeypots

5.4 Hybrid honeypots and sensor networks

This chapter describes systems that collect data from honeypots and other sources to provide
a more complete view of threats affecting monitored networks.

5.4.1 HoneySpider Network

Version 1.5 of HoneySpider Network47 is a hybrid client honeypot for scanning web pages on a
large scale, combining low- and high-interaction detection methods, created jointly by
NASK/CERT Polska, GOVCERT.NL (NCSC.NL) and SURFnet. A custom web client emulator based
on Heritrix crawler48 and Rhino JavaScript engine49 is the basis of the low-interaction
component. JavaScript collected by the web client is passed to a static analyser, which
computes n-gram statistics for the input source code and uses a naive Bayes classifier to
determine if its features are consistent with characteristics of malicious scripts. Application of
machine learning techniques in the analyser allows it to adapt to changing properties of
malicious JavaScript. The high-interaction capability is provided by Capture-HPC NG (new
features were developed as a part of the HSN project – see section 5.3.2.1).

The system has multiple interfaces to insert new URLs for scanning, including inspecting
mailboxes and performing automatic Google queries. Results for all analysed pages are stored
in a central database. HSN provides a complete web user interface that can be used for
scheduling scans, viewing results and administering the whole system. The honeypot system is
scalable – it is possible to leverage multiple processing nodes both for high- and low-
interaction analyses.

HoneySpider Network 1.5 has already reached its end-of-life and will be replaced by the
version 2.0 (expected release date: November 2012). The new version has a completely
redesigned architecture with the focus on creating a flexible framework for integrating
multiple honeypots and analysers, both standalone and developed specifically for HSN.
Thanks to increased modularity, a large number of detection methods can be added to the
system. New low-interaction features include SWF, PDF and Microsoft Office analysis,
shellcode detection, anti-virus scans and querying external reputation services. Additionally, a
service based on Cuckoo Sandbox (see section 7.1.1) was added as an alternative high-
interaction component.

Version 2.0 will be released on an open-source licence; the availability of previous versions
(except the Capture-HPC NG component) is limited to selected partner organisations.

47 http://www.honeyspider.net/

48 http://crawler.archive.org/

49 http://mozilla.org/rhino

http://www.honeyspider.net/
http://crawler.archive.org/
http://mozilla.org/rhino

150

Proactive Detection of Security Incidents

Honeypots

Figure 35: HoneySpider Network 2.0 in operation (screenshot)

5.4.2 Early warning systems

Honeypots are often a part of early warning systems (EWS) which monitor network
infrastructure, inform about malware propagation and report other security incidents. Usually
an EWS consists of a distributed network of sensors that collect data from a collection of
organisations (or departments of a single organisation) and report to an analytics centre
where information is aggregated. Collected data may include network flows, logs from
firewalls or servers, honeypot reports and variety of other security-related events.
Aggregation of a large amount of data from multiple sources allows for performing multiple
analyses, e.g. observe trends and large-scale phenomena, correlate different types of events
to detect new threats, monitor malware spreading on the internet.

All major EWS solutions except SURFcert IDS (described in the next section) are available
through commercial licences only. We therefore provide just a brief description of them, to
illustrate how honeypots are sometimes used as part of other, larger, systems. Some are

151

Proactive Detection of Security Incidents

Honeypots

offered in subscription-based models, where a participating organisation receives a sensor
that has to be deployed in its network. Access to generated alerts, management and analytical
features is offered as a service by the producer.

Some EWS use honeypots as a secondary source of information, with the bulk of the data
coming from network monitoring, anti-virus alerts, etc. This model seems to be taken in
Symantec DeepSight50 and ATLAS Arbor (see section 6.4), where publicly available
documentation indicates that the role of honeypots is limited and does not provide any
details about their functionality.

Another group of systems is reliant on honeypots as their primary data source. The ARAKIS51
system by NASK/CERT Polska uses low-interaction honeypots to capture manual and
automated attacks on monitored networks. Apart from obtaining statistical information and
operational intelligence expected from any EWS solution, ARAKIS performs additional
analyses on the collected data in order to identify common patterns that correspond to
unknown threats and generate signatures that can be deployed in existing intrusion detection
systems.

Another honeypot-based system is SGNET (formerly Leurre.com) by Eurecom,52 which is a
research project rather than a complete EWS solution. It leverages machine learning
techniques and high-interaction honeypots to create probabilistic models of application-layer
protocols. Once a protocol model is created, incoming connections can be handled by low-
interaction honeypots. Such an approach in theory allows users to create a ‘universal’
honeypot, which is able to learn how to emulate new protocols without human intervention.

A network of open-source honeypot sensors is the basis of the Global Distributed Honeynet
(GDH)53 project developed by The Honeynet Project. Sensors (HonEeeBoxes) are small-factor
appliances, distributed to volunteering organisations free of charge. The role of the
HonEeeBoxes is limited to gathering attack data using Honeyd (see section 5.2.2.1.4) and
Dionaea (see section 5.2.2.1.2) software and reporting it to a single central server, which is
responsible for storage, data analysis, and provides a user interface. Global Distributed
Honeynet is not yet fully operational – while sensors have been deployed world-wide, the
centralised server is still under development.

50

 http://www.symantec.com/services/detail/detail.jsp?pcid=consulting_services&pvid=svc_deepsight_early_warning

51 http://www.arakis.pl

52 http://www.leurrecom.org/

53 David Watson (2009), ‘HonEeeBox – Rapid Deployment of Many Distributed Low Interaction Malware Collectors’, available
from [http://www.ukhoneynet.org/David_Watson_HonEeeBox.pdf]

http://www.symantec.com/services/detail/detail.jsp?pcid=consulting_services&pvid=svc_deepsight_early_warning
http://www.arakis.pl/
http://www.leurrecom.org/
http://www.ukhoneynet.org/David_Watson_HonEeeBox.pdf

152

Proactive Detection of Security Incidents

Honeypots

5.4.3 SURFcert IDS

SURFcert IDS (formerly known as SURFids) is a distributed intrusion detection system and an
early warning system.54 Unlike other EWS solutions, it is available on an open-source licence –
GPL version 2.

SURFcert IDS uses lightweight sensors – acting as proxies, forwarding network traffic (layer 3)
from the monitored network to the system’s centre using OpenVPN.55 The centre consists of
two main components: tunnel and logging servers. The tunnel server acts as a hub, receiving
traffic from all sensors and distributing it to honeypots. Currently SURFnet IDS integrates with
four honeypots: Nepenthes (see section 5.2.2.1.6), Dionaea (see section 5.2.2.1.2), Kippo (see
section 5.2.2.3.1) and Argos (see section 5.2.1.1). They can be run on the tunnel server itself
or on separate machines to distribute the load generated by incoming traffic.

Apart from honeypots, the system is able to perform additional analyses – downloaded files
can be scanned by several anti-virus engines and p0f56 is used to determine operating systems
used by attackers. All connection data and other events are stored by the logging server, using
a PostgreSQL database back-end. The logging server also hosts a sophisticated web GUI that
displays all data gathered by the system using dashboards, rankings and geographical
visualisations. It provides a rich search engine and allows users to create reports which can be
exported to multiple formats, including IDMEF.57 It is also possible to administrate sensors
remotely and monitor the status of the whole system using the GUI.

SURFcert IDS still has new features being added – the last release was in December 2011.
Sound architecture, good documentation and support for multiple server-side honeypots
make the solution a useful open-source EWS and distributed IDS.

54

 http://ids.surfnet.nl/

55 http://openvpn.net/index.php/open-source.html

56 http://lcamtuf.coredump.cx/p0f3/

57 RFC 4765 – The Intrusion Detection Message Exchange Format (IDMEF), available from:
[http://www.ietf.org/rfc/rfc4765.txt]

http://ids.surfnet.nl/
http://openvpn.net/index.php/open-source.html
http://lcamtuf.coredump.cx/p0f3/
http://www.ietf.org/rfc/rfc4765.txt

153

Proactive Detection of Security Incidents

Honeypots

Figure 36: SURFcert IDS in operation (screenshot)

5.5 Honeytokens

A honeytoken is defined by Lance Spitzner58 as a honeypot that is anything but a computer. It
can be any resource, such as a text file, email message or database record. Since a
honeytoken is a piece of data that should not be accessed through normal activity, i.e. does

58 Spitzner, Lance (2010), ‘Honeytokens: The Other Honeypot’, available from
[http://www.symantec.com/connect/articles/honeytokens-other-honeypot]

http://www.symantec.com/connect/articles/honeytokens-other-honeypot

154

Proactive Detection of Security Incidents

Honeypots

not have any production value, any access must be intentional, which means it is likely to be
an unauthorised act.

Although the idea behind the honeytoken is not new, the term was first introduced as late as
2003 by Augusto Paes de Barros.59 Honeytokens are very flexible tools, which can be used for
detection of malicious activity as well as identifying the source of the attack or attacker
motives. Virtually anything that contains data may be used as a honeytoken.

Honeytokens can be a good mechanism for identifying or tracking a data breach or an insider
threat.

5.5.1 Implementation

The operational principle of honeytokens is very simple: one just puts a honeytoken in the
system and monitors any activity associated with it.

There are some requirements60 that a piece of information should meet in order to be used as
a honeytoken. First of all, a honeytoken has to be believable, i.e. appearing to be true. It
should appear to be a valuable and desirable information asset. This means that the
honeytoken should contain information that will seem important to an attacker, such as
passwords or credit card numbers. It is also important that a honeytoken will not interfere
with normal system operations, i.e. it should not pollute authentic data. Moreover, it should
be obvious to legitimate users that the honeytoken is a decoy for an attacker. Finally, it has to
be possible to detect that a honeytoken has been accessed. In order to minimise the false
positives rate, each honeytoken has to be unique.

5.5.2 Examples

Data that will be used as bait are limited only by the imagination. In the simplest case the
honeytoken can be a file containing dummy data (as compromise is likely), such as credentials
or social security numbers. An alternative is to store such information in a database, a user’s
email inbox or a corporate dropbox.

Another issue is the location where the honeytoken will be placed. In most cases it should be
suited to the existing infrastructure. It is important to note that this technology is capable of
being used for detecting internal data leaks as well as external attacks.

5.5.2.1 File system

In many cases users have access to data using file sharing services, such as FTP servers or
Windows shares (SMB). These are good locations to place honeytoken files containing
‘sensitive’ information. Those files should attract a potential attacker with attractive and

59 Augusto Paes de Barros, 2003, see [http://seclists.org/focus-ids/2003/Feb/95]

60 Hershkop, Shlomo et al (2008), ‘Baiting Inside Attackers using Decoy Documents’, available from
[http://www1.cs.columbia.edu/~angelos/Papers/2009/DecoyDocumentsSECCOM09.pdf]

http://seclists.org/focus-ids/2003/Feb/95
http://www1.cs.columbia.edu/~angelos/Papers/2009/DecoyDocumentsSECCOM09.pdf

155

Proactive Detection of Security Incidents

Honeypots

descriptive names like ‘system passwords’, ‘credit card numbers’ or ‘confidential data’. A fake
invoice or receipt can also make a decent honeytoken.

5.5.2.2 Web server

A web server offers many possibilities for honeytoken placement.61 The most straightforward
one is to create a directory with fake confidential files. Such a directory should have a name
that could be revealed for example by a vulnerability scanner. Another option is to put a name
of this directory in the robots.txt file in the ‘Disallowed’ section.

Bait in the form of credentials or a crafted URL could be placed on the web page as an HTML
comment. A more sophisticated method of luring the attacker could include setting a fake
cookie with a string that the attacker might be tempted to change, such as logged=0 or
admin=false.

5.5.2.3 Email

A good location for a honeytoken is an email inbox. An email message containing credentials
or a confidential attachment should be made to look as legitimate as possible to an attacker,
making it good bait.

5.5.2.4 Financial bait

Credit card issuers offer one-time credit card numbers and other forms of controlled payment
numbers, which allows one to generate multiple credit card numbers for a single account.62
Use of those numbers can later be monitored, for example in conjunction with a PayPal
account.

5.5.2.5 Copyrights

Honeytokens can also be used to track copyright violations, for example in the form of an
article with typos or with the addition of some insignificant bogus data.

5.5.3 Data provision strategies

Allowing access to the honeytoken can be achieved in different ways. First of all, information
can be made accessible internally, externally or both. Another way is to provide the data in a
way that is only visible to potential attackers. For example, given a web server, the
honeytoken could be delivered to a user that sends a request with specific HTTP headers only,
such as a specific User-Agent.

61 Ullrich, Johannes, ‘My Top 6 Honeytokens’, available from [http://software-security.sans.org/blog/2009/06/04/my-top-6-
honeytoken]

62 Hershkop, Shlomo et al (2008), ‘Baiting Inside Attackers using Decoy Documents’, available from
[http://www1.cs.columbia.edu/~angelos/Papers/2009/DecoyDocumentsSECCOM09.pdf]

http://software-security.sans.org/blog/2009/06/04/my-top-6-honeytoken
http://software-security.sans.org/blog/2009/06/04/my-top-6-honeytoken
http://www1.cs.columbia.edu/~angelos/Papers/2009/DecoyDocumentsSECCOM09.pdf

156

Proactive Detection of Security Incidents

Honeypots

5.5.3.1 Honeypots and honeytokens

Honeytokens can also be coupled with honeypots. An example simple scenario might look as
follows:

There is a web application honeypot with a local file inclusion vulnerability, which displays the
password file, e.g. /etc/passwd, which consists of real usernames and passwords for a

SSH/Telnet honeypot. Subsequent usage of those credentials is monitored.

Another possibility is to place a honeytoken file on the honeypot (the one that provides access
to files, e.g. FTP, SSH, web) with an IP address of another honeypot.

5.5.4 Detecting the use of honeytokens

Basically, there three methods that can be used to detect the use of the honeytoken:
 system or application logs,
 IDS signatures,
 usage of specialised Data Loss Prevention solutions, which may make use of the
previous two methods.

An IDS signature is probably the easiest method to set up quickly to monitor honeytokens, as
there is no need to monitor different locations for every service that offers honeytokens.

Monitoring the use of honeytokens can be done onsite, i.e. watching for data access (files,
particular URL) or externally, i.e. watching for use of leaked data (credentials, IP addresses,
etc.) External monitoring is useful to determine what is happening with stolen data, e.g.
where and by whom it is used. Specifically, Internet services exist that are often used for data
leaks (pastebin63 seems to be particularly popular).

5.5.4.1 Offensive techniques

It is also possible to use active tracking techniques to determine what is happening with
honeytokens. An example would be a PDF document which sends information about the
attacker back to its owner when the document is opened.

63 http://pastebin.com/

http://pastebin.com/

157

Proactive Detection of Security Incidents

Honeypots

6 Inventory of communities, initiatives and other honeypot-related projects

This chapter provides a selected list of honeypot communities of interest, initiatives and
projects, past and present. It is intended as starting point for CERTs interested in more active
participation in the development of honeypot concepts and tools to establish contacts with
their peers.

6.1 The Honeynet Project

The Honeynet Project64 was founded in 1999. It is a leading international non-profit security
research organisation, dedicated to investigating the latest attacks and developing open-
source tools to improve Internet security. Many tools described in this document were
created under the auspices of the Honeynet Project or one of its Chapters which represent
the Project in a country/research community.

The organisation members are volunteers, contributing their time and knowledge to improve
the tools and techniques for fighting malware. The Project’s members usually come from
security organisations (CERTs are becoming more and more common) or have an academic
background. Such a broad spectrum of participants provides a wide perspective on the needs
of the Internet and security communities. It allows for staying on track with current research
directions, providing support for ISPs and other entities, by advising through articles and
white papers on current threat vectors and methods of mitigating them.

The organisation hosts many research projects and produces papers describing methods of
mitigating attacks – the ‘Know Your Enemy’ and ‘Know Your Tools’ series.65 One of the most
prominent initiatives of the Honeynet Project are HP Feeds (see Chapter 8) and the
HonEeeBox sensors used to build a network of geographically distributed sensors for
gathering data on various types of attacks (see section 5.4.2).

Sharing of knowledge is an important part of the Honeynet Project activities. Once a year the
Project organises an international workshop, open to the public, where results from the past
year’s research and development are presented. The workshop allows members to obtain
outside feedback and plan new research directions. It is also a great opportunity to apply for
membership and share ideas. Membership in The Honeynet Project is cost-free but does have
some associated obligations.

6.2 NoAH project

The NoAH project66 was a pan-European initiative launched to gather and analyse information
about the nature of various cyber-attacks, such as viruses, worms, trojans and spyware on the
Internet. The aim of NoAH was to help NRENs and ISPs limit damage to their networks, better

64 http://www.honeynet.org

65 https://www.honeynet.org/papers

66 http://www.fp6-noah.org

http://www.honeynet.org/
https://www.honeynet.org/papers
http://www.fp6-noah.org/

158

Proactive Detection of Security Incidents

Honeypots

assess Internet threats and provide researchers with a great source of attack-related data.
This allowed for improvement of malware detection techniques, which in turn led to the
creation of better tools and solutions. Among the project partners were academic institutions
like TERENA, FORTH and Vrije Universiteit of Amsterdam, telecom operators and security
teams.

The project was active for three years. During that time attack data were collected which
allowed for the creation of various tools for detection, mitigation and prevention of Internet
threats. The Shelia honeypot (see section 5.3.2.3) is an example. All those tools are available
for free download on the project’s website.

The NoAH project designed and deployed an infrastructure for security monitoring based on
honeypot technology. To build the network of honeypots the project developed a client called
‘honey@home’67 for the Windows and Linux operating systems, allowing home users to turn
their computers into network sensors contributing data to a centralised system. The web page
of the honey@home network allowed registration and downloading of the sensor software,
but the project ceased operation.

6.3 WOMBAT

The goal of the WOMBAT68 project (Worldwide Observatory of Malicious Behaviour and
Attack Threats) was to develop a platform for monitoring and analysing Internet attacks and
threats. The project’s consortium was built from partners of various backgrounds, including
academia, security experts, telecommunication companies and research institutes. The main
areas of interest of the project were malware acquisition techniques using crawlers and
honeypots, developing new data-enriching techniques and analysis methods. Project
members published many papers presenting the results of their findings. New tools had been
developed or extended with new functionality. One of the most prominent deliverables of the
project was the creation of a common interface – WAPI69 – for various tools and services run
by the consortium members. The interface was used to integrate various systems of
consortium members and to allow a consistent means to query them.

The project created online solutions allowing community members to track and analyse
various kinds of attacks. Even though the WOMBAT project officially finished in April 2011,
consortium members have been maintaining many of these services and extending their tools
with new functionality since then.

One such service was FIRE.70 It tracked malicious networks, which allows blacklisting of
confirmed malicious IP addresses. It gathered and processes data from Anubis (see section

67

 S. Antonatos, E.P. Markatos and K.G. Agnostakis (2007), ‘Honey@home: A New Approach to Large Scale Threat Monitoring’,
available from [http://www.ics.forth.gr/_pdf/brochures/worm07_honeyathome.pdf]

68 http://www.wombat-project.eu/

69 WOMBAT API

70 Finding Rogue Networks – http://maliciousnetworks.org

http://www.ics.forth.gr/_pdf/brochures/worm07_honeyathome.pdf
http://www.wombat-project.eu/
http://maliciousnetworks.org/

159

Proactive Detection of Security Incidents

Honeypots

7.1.2.1), Phishtank,71 Wepawet (see section 7.2.2) and HoneySpider Network (see section
5.4.1). The service was focused on analysis of three types of malicious activity: drive-by
downloads, Command&Control centres and phishing. Unfortunately, it is no longer online.

Another service called EXPOSURE72 identifies domain names that are involved in malicious
activity by performing passive DNS analysis. The service obtains data from sources like Anubis,
Wepawet and SIE73 portal of the Internet Systems Consortium. Data shared by EXPOSURE are
free to use for non-commercial purposes.

6.4 Atlas Arbor74

ATLAS75 is a service run by Arbor Networks Inc. It is a global early warning system gathering
data from various sources. The main data source is the Arbor Peakflow sensor, but the service
also uses lightweight honeypot sensors to detect and fingerprint attacks launched by
malicious sources on the Internet. Arbor Networks runs a public portal and provides a subset
of the intelligence data derived from the ATLAS sensor network. The data include scanning
activity for any TCP/UDP port and top offenders, zero-day exploits and worm propagation,
security events, vulnerability disclosures and dynamic botnet and phishing infrastructures. The
portal displays visualised attack data in various forms: a global threat map – a real-time
visualisation of globally propagating threats, threat briefs summarising the most significant
security events from the last 24 hours, top threat sources, top Internet attacks from the last
24 hours, and vulnerability risk index of the most dangerous ones exploited on the Internet
during the day.

Currently, ATLAS imports data only from their own sensors, which are commercial solutions
developed by Arbor Networks. The sensors are deployed primarily in service providers’
networks. CERTs and other security teams interested in getting access to full functionality of
the service are required to register for this free service.

6.5 Project Honey Pot

Project Honey Pot76 is a distributed system for detecting spammers and spambots.
Participation in the project does not require much effort – just installation of a simple
monitoring script on a web server. The script generates a unique email address for each visitor
with encoded information about the time of visit and IP address. If this unique email address
starts receiving spam at some point in time, it means that the site has been harvested by a
spambot. The fact that the IP address of this bot had been previously recorded, allows it to be

71 http://www.phishtank.com

72
 http://exposure.iseclab.org

73 https://sie.isc.org/

74 http://atlas.arbor.net

75 Active Threat Level Analysis System

76 http://www.projecthoneypot.org

http://www.phishtank.com/
http://exposure.iseclab.org/
https://sie.isc.org/
http://atlas.arbor.net/
http://www.projecthoneypot.org/

160

Proactive Detection of Security Incidents

Honeypots

put on a blacklist or an attempt to be made to find the people responsible for sending spam.
All the spam traffic is handled by the project’s infrastructure.

Data gathered by the spamtraps is shared with researchers and developers to find new and
improve existing spam detection techniques. The project’s website shares various statistics
extracted from data gathered by spamtraps: country-related information (e.g. top harvester
countries), top user agents used by harvesters and other software, IP addresses generating
spam, the most widely used keywords in emails and URLs found in spam messages. All this
information is publicly available.

Users who want to help in fighting spam can register and download customised scripts for
their websites at no cost. Additionally, a custom dashboard has been created in the project’s
portal that allows users to see additional statistics related to their networks and provides a
means to manage honeypot scripts.

6.6 WASC Distributed Web Honeypots Project

The purpose of the WASC Distributed Web Honeypots Project77 is to identify emerging threats
on web applications and inform the community about them. The project is built around the
ModSecurity web application firewall, used to identify and report an attack. Detected attacks
include automatic scanning, and attempts to identify a vulnerable application, as well as
attacks on a specific websites or web applications. Since detection is based on rules, which
represent attack signatures, it is unlikely to detect unknown attacks (0-day).

Information about attacks gathered by the honeypot is submitted to a central server, where it
is analysed. Project participants have access to all of the sensor data. The tool does not store
the data locally.

The project, in addition to a standard web application honeypot, also provides an open proxy
honeypot, which acts as an open relay. Project participants may choose which version they
want to deploy in their network.

In order to participate in the project one has to download a VMware image, which includes
the software necessary to run a sensor. It is also possible to use an already installed Apache
with ModSecurity. Additionally, one has to contact the project leader to get the credentials
needed to submit collected data, as well as access to the log console.78

Another way of participating, rather than running a sensor, is to analyse data collected by
others. Every user gets access to a shared management console, which has built-in search and
reporting functions.

77 http://projects.webappsec.org/w/page/29606603/Distributed%20Web%20Honeypots
78 Detailed instructions on sensor setup can be found in http://lists.webappsec.org/pipermail/wasc-
honeypots_lists.webappsec.org/2012-February/000005.html

http://projects.webappsec.org/w/page/29606603/Distributed%20Web%20Honeypots
http://lists.webappsec.org/pipermail/wasc-honeypots_lists.webappsec.org/2012-February/000005.html
http://lists.webappsec.org/pipermail/wasc-honeypots_lists.webappsec.org/2012-February/000005.html

161

Proactive Detection of Security Incidents

Honeypots

Figure 37: WASC Distributed Web Honeypots console

162

Proactive Detection of Security Incidents

Honeypots

7 Sandbox technologies and online honeypots

This chapter is intended to give an overview of additional technologies that can be used by
CERT teams to analyse threats either to follow up on detection carried out by other means,
such as through the standalone tools described in Chapter 5, or completely independently.
Although delving into the details of the tools described here is beyond the scope of this study,
their close relationship with previously evaluated tools and usefulness for CERT teams
demands a short description of these technologies. Note that while using online solutions is
generally easier than setting up your own, these solutions also have some limitations. For
example, disclosure of the fact that an investigation on a particular malware or URL is being
carried out. Also, depending on the service load and state of the submission queue, it may
take some time to obtain results. Additionally, malware may be designed to avoid analysis by
a particular service or IPs used by client honeypots if the service is known to an attacker. All
these things hinder the analysis process.

7.1 Overview of sandbox technologies

Differences between sandboxes and honeypots were discussed in section 3.5. In this section,
the one example of a standalone free sandbox solution is discussed in more detail to give an
overview of capabilities provided by such technologies. Cuckoo was selected, as it has become
very popular in the security threat analysis community. Selected well-known online sandboxes
are also presented.

7.1.1 Cuckoo – a standalone solution for advanced malware analysis

Version: 0.3.2

Date tested: 1 June 2012

Website: http://www.cuckoobox.org/

Cuckoo is an automated malware analysis system, available under the GPL 3. It monitors
activity of processes inside a guest operating system (Microsoft Windows XP or newer) and
reports results of analyses.

Cuckoo leverages the free virtualisation environment offered by VirtualBox as the basis for its
operation. Each file is processed in a separate virtual machine, which is restored to the initial
state when processing is finished. It is possible to configure the actions to be taken when a
sample is sent to the guest operating system, e.g. execute the binary or open a .DOC file using
Microsoft Office. In principle, the activity of any application can be monitored as long as it is
installed in the guest.

Information gathered by the sandbox includes trace of Windows API calls performed by the
analysed binary and its child processes, file operations, network traffic dumps, and periodic
screenshots of the desktop taken periodically. Stored results contain both raw data, e.g.
network traffic in PCAP format, and processed information – in this case a summary of HTTP
connections, DNS queries, etc. Cuckoo is able to save most – but not all – of the files dropped
by malware and extract their basic metadata such as cryptographic hashes or content type.

http://www.cuckoobox.org/
http://www.cuckoobox.org/
http://www.cuckoobox.org/
http://www.cuckoobox.org/
http://www.cuckoobox.org/
http://www.cuckoobox.org/
http://www.cuckoobox.org/
http://www.cuckoobox.org/
http://www.cuckoobox.org/

163

Proactive Detection of Security Incidents

Honeypots

By design, sandboxes focus on gathering behavioural information related to the submitted
sample and do not necessarily attempt to classify individual actions into benign and malicious
categories. This also applies to Cuckoo; however, it is possible to utilise external tools in order
to determine if any suspicious activity occurred during processing. The following example
illustrates such an approach: with a minor modification to the source code, the sandbox will
save a memory dump at the end of analysis. This dump can be later imported into the
Volatility Framework which is able to extract information about the state of the system. Using
several heuristic methods, it is possible to detect traces typically left by most known malware.

The sandbox does not add
much processing overhead; a
single server with 10 virtual
machines can process more
than 5000 samples per day
(the exact number depends on
the requested analysis time).
As all analyses are
independent, it should not be
difficult to spread the load
among multiple servers;
however, Cuckoo uses only a
local SQLite database and does
not provide any convenient
interface to submit jobs or get
results of analyses remotely.

Despite the fact that the
project is quite new
(development started in
summer 2010), it can already
be considered stable enough
to use in production
environments. Under high
load, Cuckoo may experience
problems communicating with
VirtualBox that can lead to
shutdown of the entire service but there are workarounds that address this problem and,
according to information from developers, these issues should be fixed in the next release. No
other significant stability problems were observed while working with the software.

The sandbox is built in a modular way and its functionality can be easily extended. It offers
capabilities to add custom postprocessing scripts and add new reporting modules. The
software is implemented entirely in Python and has exhaustive documentation for

Figure 38: Cuckoo sandbox report

164

Proactive Detection of Security Incidents

Honeypots

developers. Additionally, architectural changes planned for the next version (0.4) should
increase the modularity of the software even further.

A detailed manual is available on the website of the project.79 It contains a step-by-step
installation guide, a description of all important configuration options, FAQ, and a
troubleshooting guide. A necessary step is preparing an image of the guest operating system;
a task that, depending on the amount of customisation, may take some effort, but this is a
common issue of all sandbox solutions.

Integration with other automated tools is one of the design goals of Cuckoo. The sandbox is
controlled through a simple SQLite database, which contains basic information about each
submitted job. All results are placed in text files with a simple directory structure. Network
dumps are saved in PCAP format, structured data can be saved in many configurable formats,
including MAEC, JSON, HTML, and plain text.

Cuckoo Sandbox is supported by major organisations: The Honeynet Project and The
Shadowserver Foundation,80 which also provides hosting for Malwr81 (see section 7.1.2.4), a
free web service that allows users to submit samples for analysis. It is actively developed by a
core team of developers and external contributors. The software has an active and helpful
user community, and communication is done over an open mailing list.

While Cuckoo itself is an open-source project, analysing malware on a large scale requires
using multiple virtual machines, which entails providing considerable hardware resources for
hosting and obtaining Windows licences.

Overall, Cuckoo Sandbox can be considered a state-of-the-art open-source sandbox solution.
Its current capabilities and constant development make it a good choice for general-purpose
malware analysis system in most CERTs.

It also has good potential to be the basis of a client honeypot solution.

7.1.2 Online Sandboxes

Online sandboxes provide services for analysis of various kinds of files, e.g. executables,
PDF/Flash files and scripts. These services can be a great source of information on malicious
files and an alternative to installing a standalone solution, which is not always possible. Some
of them provide free access to their knowledge base and allow easy integration via APIs. The
sandboxes described in the following subsections were chosen as the most useful for CERT
operations and providing the richest set of data. Note that the solutions below are just
selected examples – the list is by no means to be considered exhaustive. An important
consideration, especially for national and government CERTs is that information provided to
these online services might be made publicly available. Moreover, these services can then be

79 http://www.cuckoobox.org

80 http://www.shadowserver.org

81 http://www.malwr.com/

http://www.cuckoobox.org/
http://www.shadowserver.org/
http://www.malwr.com/

165

Proactive Detection of Security Incidents

Honeypots

used to associate a submitter and attack target directly with a submission, and the
subsequent results generated based on the submission. This information can potentially be
used by attackers to change and tune attack strategies. The user should ensure that they are
aware of this fact and should not submit anything (a URL, file, md5 etc.) for testing unless it is
acceptable for it to be publicly exposed and potentially connected directly to the submitter or
attack target.

7.1.2.1 Anubis

(https://anubis.iseclab.org)

Anubis is one of many useful services developed by the isecLAB.82 83 It is a tool for behavioural
analysis of Windows executable files. The executable is run in a controlled virtual environment
and a report is generated at the end of analysis. The process focuses on aspects of the binary
behaviour relevant to security, which makes Anubis a great tool for a security analyst. The
report from the analysis contains a great deal of information about binary interactions with
the operating system. The summary of the report gives an overview of the most suspicious
actions, with an assessment of the risk level. Further in the report the user may find
information on modifications in Windows registry, file system changes, interactions with the
Windows Service Manager or other processes, and logged network traffic. The report contains
even more advanced data, including names and offsets of loaded libraries, classification of
Ikarus Virus Scanner and signature from SigBuster tool. The service can be accessed via a web
page or with a simple API. Authors of the tool provide example scripts in the FAQ section
which may ease the process of integrating Anubis with internal CERT systems.

7.1.2.2 COMODO Automated Analysis System

(http://camas.comodo.com)

Comodo AAS is a sandbox service for analysis of behaviour of executable files. The service
allows its users to upload a file and creates a thorough report with results of the scan. The
document generated in return contains information on changes observed in the operating
system, for example modifications of Windows Registry keys, file system changes, loaded
drivers, created processes and threads. Additionally, the report presents basic information on
captured and dissected DNS and HTTP requests. The service tries to classify the binary file and
give a verdict based on observed behaviour. The summary of the report contains information
on detected malicious behaviour of the sample, e.g. injecting code into other running
processes. The service is available free of charge, but terms and conditions restrict usage only
to manual submission. Therefore the service does not have any API.

82 http://www.iseclab.org

83 Recently, an extension called Andrubis was introduced to analyse unknown Android binaries:
http://blog.iseclab.org/2012/06/04/andrubis-a-tool-for-analyzing-unknown-android-applications-2/

http://www.iseclab.org/
http://blog.iseclab.org/2012/06/04/andrubis-a-tool-for-analyzing-unknown-android-applications-2/

166

Proactive Detection of Security Incidents

Honeypots

7.1.2.3 GFI Sandbox

(http://www.threattrack.com)

The service allows scanning various types of files and produces two types of reports. The
reports are emailed back to the user. The email’s body provides a quick summary of a static
scan of the file with results from VirusTotal scan and list of observed behaviour traits.

The reports are in PDF and XML formats. The PDF report contains an executive-level summary
of the actions in the operating system. It presents details about observed file system
modifications, network events and antivirus scan results in an easy-to-understand form. This
report is just for a quick overview and to check whether the scanned sample is worth further
investigation.

The XML report contains all behavioural information observed by the sandbox during analysis,
with details regarding each of the captured activities. The data is divided into sections
presenting different types of information. The most interesting is the network activity section,
which gives details on communication the scanned sample invoked, and the processes
section, which has details about actions of running processes in the operating system. This
report is intended to be used as a source of information for users’ internal systems. It can be
parsed easily by an automatic solution and all data provided by the report can be imported
into a database.

The public website does not have a functionality allowing querying for historical results, nor
does it present any API for integration purposes. A set of additional features is available in the
commercial version of the sandbox.

7.1.2.4 Malwr

(http://www.malwr.com)

Malwr.com is a free service for determining whether a submitted file triggers some malicious
actions in the operating system. The underlying software performing the scan is Cuckoo
Sandbox, already described in section 7.1.1. The service accepts several types of files:
executable files, PDFs, PHP scripts, DLLs and Perl scripts. A report presented by the service
contains information regarding actions triggered by the analysed file, network traffic analysis,
static analysis of the file and files dropped during execution. Behaviour analysis gives
information on created processes and Windows API calls that were used by them. Network
analysis gives statistics about sent and received packets and contacted IP addresses. Static
analysis of the input file gives basic information on the structure of the analysed file; for
example, when analysing executable files it can provide the packer name, list libraries and
specific calls used by the malware or show resources embedded in the file.

The service allows searching for results of already classified binaries by querying its database
with an MD5 hash of the file. Submission of files to Malwr.com is restricted to manual input

167

Proactive Detection of Security Incidents

Honeypots

and protected from automatic use with reCaptcha.84 The service is hosted by the
Shadowserver Foundation.85

7.1.2.5 Xandora

(http://www.xandora.net)

Xandora86 is an online tool used for analysing the behaviour of Windows executable files. The
analysis is based on running the binary in the Windows environment and observing its
behaviour. A special focus is put on the analysis of malware samples. Results from the
execution of a sample are gathered in a report file that contains enough information to give a
user a good overview of the purpose and actions performed by the analysed executable. The
report includes detailed data about the structure of the input file obtained through static
analysis. The sample is also scanned by a set of antivirus engines with help of the VirusTotal
service and information about the rate of detection is included in the report. The sandbox
presents details of the modifications that the sample made to the Windows registry, the file
system or other processes, and all observed network traffic. Additionally, Xandora can make
screenshots of the whole screen while the submitted sample is being executed, which can give
some information about the possible interactions between malware and a user (e.g.
displaying some warnings or false alerts).

The tool has a web interface for submitting files for analysis and displaying reports. It is
available in two versions – a free one, limited to simple reports in the web interface, and a
commercial version allowing users to download PCAP files with captured network traffic,
dropped binaries and more. Researchers can register and upgrade their accounts to the
community version and get access to features which are not available in the public interface.

7.2 Online Honeypots

Online honeypots are solutions based on honeypot technology deployed on the Internet.
These can be divided into two categories – honeypots focused on detecting attacks on servers
and honeypots aiming at detecting attacks on client-side applications. The second group is
more common, mainly because it is much easier to build a service using a client-side honeypot
than a server-side one. The majority of such services allow for performing a website scan
and/or querying an existing database for results.

Services built on the server-side honeypots are focused mainly on displaying various types of
information about the traffic received by their honeynets. These types of services usually
allow searching for data related to the given networks and some even allow setting up alerts
when malicious traffic coming from the user’s network is observed.

84 http://www.google.com/recaptcha

85 http://www.shadowserver.org/wiki/

86 Note that it is unclear who exactly operates this service

http://www.google.com/recaptcha
http://www.shadowserver.org/wiki/

168

Proactive Detection of Security Incidents

Honeypots

This chapter gives a short summary of a few online solutions with a short evaluation focused
mainly on usefulness in typical operations performed by CERTs. One important consideration,
especially for national and government CERTs, is that information provided to these online
services might be made publicly available. Moreover, these services can then be used to
associate a submitter and attack target directly with a submission, and the subsequent results
generated based on the submission. This information can potentially be used by attackers to
change and tune attack strategies. The user should ensure that they are aware of this fact and
not submit anything (a URL, file, md5 etc.) for testing unless it is acceptable for it to be
publicly exposed and potentially connected directly to the submitter or attack target.

7.2.1 urlQuery

(http://urlquery.net)

UrlQuery87 allows performing a URL scan in order to determine potential danger when visiting
the website. The URL is opened in the Firefox browser and all network traffic during the visit is
monitored with Suricata88 and Snort.89 These two tools raise alerts each time a malicious
traffic or traffic to known malicious IP addresses is detected. In addition, information from the
JavaScript interpreter is attached to the report, giving valuable insight into the operation of
the browser and allowing users to see the exact code used to exploit it. The solution tries to
distinguish suspicious JavaScript code to bring the user’s attention to it, although it is unclear
on what basis the suspicious code is identified. HTTP requests from the browser are observed
and interpreted and the report is enriched with a graph showing the relations between
domains visited during the time of scanning.

The service allows viewing of various statistics about different scan results including overall
view of detected malicious websites and alerts organised by country, autonomous system
numbers and IP addresses. The most interesting feature of the portal, especially for advanced
users, is the ability to use regular expressions in queries to search the database for interesting
data. The regular expression is matched against the entire URL string and a list of matched
addresses is provided back to the user.

The service is still in development but it already looks very promising. There is no public API
available yet, but a beta version of it is currently being tested.

87 Note that is unclear who exactly operates this service

88 http://www.openinfosecfoundation.org/

89 http://www.snort.org

http://www.openinfosecfoundation.org/
http://www.snort.org/

169

Proactive Detection of Security Incidents

Honeypots

7.2.2 Wepawet

(http://wepawet.cs.ucsb.edu)

Wepawet is as a platform for detecting web-based threats. As stated by the authors, the
solution ‘uses a composition of approaches and techniques to execute, trace, analyse, and
characterise the activity of code whose execution is triggered by visiting a web page’.90

The service allows users to post an URL or a PDF/Flash file for analysis. Results from the
analysis give details on classification of the web page, extracted JavaScript code samples,
detected exploits and shellcode samples. The JavaScript samples are de-obfuscated during
execution, which allows analysts to inspect it later. Wepawet monitors JavaScript calls made
during execution, which allows identification of all code responsible for DOM modifications
and those that perform suspicious actions. All JavaScript code is divided into two categories:
evals and writes, with evals being the code executed via the eval() function, and writes being
the sections of code attached to DOM via the document.write() function.

Additionally, the report includes information on network activity (HTTP requests with content-
type and server response code), redirects performed both server-side (via HTTP codes) and
client-side (via JavaScript) with information on source and destination, use of ActiveX controls
with passed attributes and invoked methods, and finally detected malware samples (in the
form of a hex dump).

The authors of the service provide an example Python script for easy submission and querying
the service. The script gives examples on how to use the API which allows integration of
Wepawet with other systems operated by a CERT.

7.2.3 JSUNPACK

(http://jsunpack.jeek.org)

JSUNPACK is an online service that allows users to post URLs or PDF, PCAP, HTML, JavaScript
and SWF files for analysis. The back-end software emulates browser functionality when
visiting a URL or opening a file. Its purpose is to detect exploits that target browser and
browser plugin vulnerabilities. It is capable of unpacking obfuscated JavaScript code
embedded in web pages or PDF files and determining whether it is malicious or at least if it
has some suspicious elements. The report is presented online as a summary of detected
dangerous elements (e.g. known vulnerabilities reported as CVE identifiers), de-obfuscated
code and decoded contents of files. Parts of malicious file or code extracted during analysis
are available for download for further investigation with more specialised software.

The service does not provide any API for submitting files or getting results. JSUNPACK is
available for free.

90 http://wepawet.cs.ucsb.edu/about.php

http://wepawet.cs.ucsb.edu/about.php

170

Proactive Detection of Security Incidents

Honeypots

7.3 A summary and warning

As shown in this chapter, usage of online services can be very beneficial to a CERT. However,
we must stress yet again that there are certain risks involved in the use of such services. CERTs
should take these into account. Information provided to these online services might be made
publicly available. Moreover, these services can then be used to associate a submitter and
attack target directly with a submission, and the subsequent results generated based on the
submission. This information can potentially be used by attackers to change and tune attack
strategies. The user should ensure that they are aware of this fact and not submit anything (a
URL, file, md5 etc.) for testing unless it is acceptable for it to be publicly exposed and
potentially connected directly to the submitter or attack target.

171

Proactive Detection of Security Incidents

Honeypots

8 Honeypot support tools

This chapter describes selected tools that are not part of honeypots, but they were developed
in order to facilitate honeypot management or to provide additional features such as statistics
or visualisations. This list is intended to provide examples of such software, and is by no
means exhaustive.

8.1 Nepenthes support tools: PHARM

PHARM91 is a tool designed to manage distributed nepenthes instances and analyse and
present information collected by honeypots. It consists of three components and operates an
in client/server architecture.

The first component, PHARM client, runs on the system where a single instance of nepenthes
operates, and listens for any changes in nepenthes log files, sending the data (logs and
binaries) to the PHARM server (the second component). The server collects the data from all
configured PHARM clients in one central storage, which uses a MySQL database. The third
component is PHARM web portal. Its main purposes are to present all data collected by
nepenthes instances in human-friendly format and to perform some simple analytical
functions. One of those functions is mapping sources of attacks to a world map using Google
Maps API. Furthermore, it provides an interface to query the VirusTotal service for detailed
analysis of malware collected by nepenthes and stored in the PHARM server.

PHARM is open-source software, written in Perl. It requires MySQL and Apache web server
with CGI support enabled. It has basic user documentation, sufficient to properly install and
run the software. The tool was released in 2009 (version 1.0.1). Unfortunately, it seems to be
abandoned.

8.2 Dionaea support tools: carniwwwhore

The Dionaea honeypot has a web interface available called carniwwwhore.92 It is written in
Python programming language using the django framework. It uses a Postgres database;
therefore, one has to convert current SQLite logs (there is a script provided for that purpose).

The tool provides different views: an overview on collected data, information about attacks,
list of downloads and details from VirusTotal about the received malware.

Carniwwwhore was released in 2010 and it is available as an open-source software.
Documentation is available on the project’s website.

91 http://www.nepenthespharm.com/

92 http://carnivore.it/2010/11/27/carniwwwhore

http://www.nepenthespharm.com/
http://carnivore.it/2010/11/27/carniwwwhore

172

Proactive Detection of Security Incidents

Honeypots

8.3 Honeyd support tools: HoneyView, Honeyd2MySQL, Honeyd-Viz, Honeyd
configuration GUI, WinHoneyd and HOACD

HoneyView93 is a log analyser for Honeyd. It presents the log file data both in text and
graphical form in order to provide an overview of Honeyd events. The tool consists of a PHP
web interface and a shell script that parses text-based log file and inserts it into a MySQL
database. The interface allows one to query and view the data in text format as well as
generate diagrams. HoneyView was released under GPL in 2003.

Recently a different Honeyd log analyser was developed – Honeyd2MySQL.94 It is a simple
Perl script, which extracts basic statistics from Honeyd text log files and converts them to an
SQL data model. Data produced by Honeyd2MySQL can be viewed in Honeyd-Viz95 – a basic
PHP web service that uses Google Maps API and an external geolocation database to create
several different visualisations of attack sources and characteristics of the observed network
traffic. Both tools are available under GPL version 3 and seem to be actively developed.

Honeyd configuration GUI96 is a graphical utility to manipulate Honeyd configuration and
create arbitrarily complex networks of virtual hosts. Implemented in Java, source code is
available under a 3-clause BSD licence. Unfortunately it has not been maintained since its
release in 2003 and has problems running on modern systems.

Another Honeyd management solution was created by netVigilance for its Windows port of
Honeyd (WinHoneyd).97 In a similar way to the previous tool, it helps to define virtual hosts
and place them in a virtual network. While the Windows port of Honeyd remains open-source
software, the configuration utility is only available under a commercial licence. WinHoneyd is
based on the most recent official Honeyd release.

The former Honeynet.BR project,98 which was disbanded in 2008, released a number of
honeypot-related tools. They include Honeydsum.pl for generating statistics from Honeyd
logs and scripts for emulation of Mydoom, Kuang2 and Windows shell backdoors.
Additionally, the Honeynet.BR distributes HOACD – a preconfigured OpenBSD system with
Honeyd on a bootable CD that can be used to create a dedicated low-interaction honeypot. All
these tools are available under 2-clause or 4-clause BSD licences.

93 http://honeyview.sourceforge.net/

94
 http://bruteforce.gr/honeyd2mysql

95 http://bruteforce.gr/honeyd-viz

96 http://www.citi.umich.edu/u/provos/honeyd/ch01-results/1/

97 http://www2.netvigilance.com/winhoneyd

98 http://www.honeynet.org.br/

http://honeyview.sourceforge.net/
http://honeyview.sourceforge.net/
http://honeyview.sourceforge.net/
http://honeyview.sourceforge.net/
http://honeyview.sourceforge.net/
http://honeyview.sourceforge.net/
http://honeyview.sourceforge.net/
http://honeyview.sourceforge.net/
http://bruteforce.gr/honeyd2mysql
http://bruteforce.gr/honeyd-viz
http://www.citi.umich.edu/u/provos/honeyd/ch01-results/1/
http://www2.netvigilance.com/winhoneyd
http://www.honeynet.org.br/

173

Proactive Detection of Security Incidents

Honeypots

Finally, some scripts can be found on the Honeyd website.99 Most of them emulate different
network services (HTTP, FTP, SMTP, POP3, Telnet) or (outdated) Windows backdoors.

8.4 Kippo support tools: Kippo-Graph, kippo stats and django-kippo

There is a script distributed along with Kippo that allows previously stored sessions to be
replayed.

There are also third party programs available, which gather statistics and visualise them.
These include Kippo-Graph100 and kippo stats.101 Kippo-Graph is a PHP script, which
generates 24 different charts for a dataset, such as: top 10 passwords/usernames/combos,
success ratio, connections per IP/country, probes per day/week, SSH clients. It also displays a
map based on extracted geolocation data. Kippo stats provides similar statistics: number of
attempted SSH sessions every X minutes, number of successful SSH connections every X
minutes, top 5 usernames and top 5 passwords attempted for root user. The tool is written in
Perl programming language.

There is also a simple web application, django-kippo,102 which allows one to browse kippo
data stored in MySQL database via the django admin panel.

Another potentially useful script is Kippo2MySQL,103 which extracts some very basic statistics
from text-based log files and inserts them into a MySQL database. The tool is a modified
version of the aforementioned kippo stats.

8.5 Other tools

There are some support tools available, which are not designed for a specific honeypot, but
can be used with a variety of honeypot technologies.

8.5.1 Honeywall

URL://projects.honeynet.org/honeywall/

Honeywall is a bootable CD used to deploy a honeynet gateway solution (see Chapter 4). It
comes with a web UI called Walleye, which has an integrated data analysis interface,
especially useful for data provided by the Sebek honeypot (see section 5.2.1.5). Moreover, it
can be used to monitor and control all inbound and outbound connections to the honeynet
using Argus.104 Honeywall allows for extraction of raw traffic in PCAP format, dissects network

99 http://www.honeyd.org/contrib.php

100
 http://bruteforce.gr/kippo-graph

101 https://github.com/mfontani/kippo-stats

102 https://github.com/jedie/django-kippo

103 http://bruteforce.gr/kippo2mysql

104 http://www.qosient.com/argus/

https://projects.honeynet.org/honeywall/
https://projects.honeynet.org/honeywall/
https://projects.honeynet.org/honeywall/
https://projects.honeynet.org/honeywall/
https://projects.honeynet.org/honeywall/
https://projects.honeynet.org/honeywall/
https://projects.honeynet.org/honeywall/
https://projects.honeynet.org/honeywall/
https://projects.honeynet.org/honeywall/
http://www.honeyd.org/contrib.php
http://bruteforce.gr/kippo-graph
https://github.com/mfontani/kippo-stats
https://github.com/jedie/django-kippo
http://bruteforce.gr/kippo2mysql
http://www.qosient.com/argus/

174

Proactive Detection of Security Incidents

Honeypots

flows and includes results of Snort classification of observed traffic. Additionally, to ease
maintenance of the system, a set of command line and graphical tools is provided.

The CD, when booted, allows users to install a customised CentOS Linux distribution and
relevant packages needed to operate the Honeywall and Walleye. All features of the system
are available only after it is installed to a hard disk. Honeywall has a configuration wizard that
simplifies deployment of the solution and requires answering a set of questions in order to
tailor installation to the requirements of the honeynet it will monitor. Most of the
configuration options can be later set or modified via Walleye.

The main purpose of the Walleye web interface is to allow a user to examine events occurring
in the honeynet. Especially useful for an operator is the ability to observe attacks detected by
Sebek honeypots. The data analysis module is able to intercept data coming from the
honeypots and correlate it with network traffic. Based on this information, the visualisation
module can present a tree graph of processes as they were invoked on the attacked
machines.

All traffic passing via honeywall is split into single flows and displayed as a list with
information about the time of the event, transport protocol used, discovered operating
system of the attacker, IP addresses taking part in the communication, volume of traffic and
number of packets exchanged between endpoints, and finally the service (port number and
protocol) being attacked. An operator can perform further analysis of the flows by
investigating results, for example from the Snort IDS.

Honeywall and Walleye are open-source tools with source code hosted on the Honeynet
Project website.105 Unfortunately, development of both projects stopped in 2009 and today
the software seems outdated.

8.5.2 HP Feeds

URL: http://redmine.honeynet.org/projects/hpfeeds/wiki

https://github.com/rep/hpfeeds/

This is a new project that implements a protocol for easy exchange of live data feeds. It is
based on a simple publish/subscribe concept supporting authenticated transfer and arbitrary
binary payloads. The binary feeds are separated in channels but are not encoded or presented
in any specialised data format, hence it is the users’ responsibility to decide on a consistent
form of representation for specific feeds. The channels are protected by an authentication
mechanism and can be secured further with SSL/TLS protocol. A user can have access to
multiple channels by having multiple access-keys with distinct access rights to each channel.

The server side of the system has two major components: the broker and the web interface.
The web interface is used only to manage authkeys, add and manage sinks and sources of
data feeds. The broker is a lightweight network daemon forwarding incoming messages to

105
 https://projects.honeynet.org/honeywall/browser/

http://redmine.honeynet.org/projects/hpfeeds/wiki
http://redmine.honeynet.org/projects/hpfeeds/wiki
http://redmine.honeynet.org/projects/hpfeeds/wiki
http://redmine.honeynet.org/projects/hpfeeds/wiki
http://redmine.honeynet.org/projects/hpfeeds/wiki
http://redmine.honeynet.org/projects/hpfeeds/wiki
http://redmine.honeynet.org/projects/hpfeeds/wiki
http://redmine.honeynet.org/projects/hpfeeds/wiki
http://redmine.honeynet.org/projects/hpfeeds/wiki
http://redmine.honeynet.org/projects/hpfeeds/wiki
http://redmine.honeynet.org/projects/hpfeeds/wiki
http://redmine.honeynet.org/projects/hpfeeds/wiki
http://redmine.honeynet.org/projects/hpfeeds/wiki
https://github.com/rep/hpfeeds/
https://github.com/rep/hpfeeds/
https://github.com/rep/hpfeeds/
https://github.com/rep/hpfeeds/
https://github.com/rep/hpfeeds/
https://github.com/rep/hpfeeds/
https://github.com/rep/hpfeeds/
https://github.com/rep/hpfeeds/
https://github.com/rep/hpfeeds/
https://github.com/rep/hpfeeds/
https://projects.honeynet.org/honeywall/browser/

175

Proactive Detection of Security Incidents

Honeypots

proper subscribers. The daemon does not store messages if a subscriber is not present,
therefore some messages can be lost. Currently several interfaces were created to allow
communication with the HP Feeds system, e.g. for dionaea (see section 5.2.2.1.2), Kippo (see
section 5.2.2.3.1), Thug (see section 5.3.1.4), Glastopf (see section 5.2.2.2.3) and Cuckoo (see
section 7.1.1). Some of them are still in testing, so the contents of the channels may change in
the future. Structure of the protocol is well documented106 and allows for relatively easy
integration of new sinks and sources into the system. To further ease the process, a
communication library called libhpfeeds was created. HP Feeds is an open-source project and
its code is hosted on github at https://github.com/rep/hpfeeds/.

There is a working deployment107 of the HP Feeds system available, but access to it is
currently restricted to members and contributors of The Honeynet Project. Access requires
registration and verification by any of the already registered users.

8.5.3 HoneyStats

URL: sourceforge.net/projects/honeystats/

HoneyStats is a tool that provides a statistical view of the activity on a honeynet. The tool
analyses inbound firewall logs recorded by the honeynet’s firewall and presents information
about its findings using web interface.

It provides statistical analysis on both graphs and maps. The information includes: top
destination ports, top countries of probes, a port’s trend through time, and a volume of
probes per geographical location.

HoneyStats was written in Perl programming language, it was released under the GNU GPL in
2006.

106
 http://redmine.honeynet.org/projects/hpfeeds/wiki/

107
 http://hpfeeds.honeycloud.net/

https://github.com/rep/hpfeeds/
http://sourceforge.net/projects/honeystats/
http://sourceforge.net/projects/honeystats/
http://sourceforge.net/projects/honeystats/
http://sourceforge.net/projects/honeystats/
http://sourceforge.net/projects/honeystats/
http://sourceforge.net/projects/honeystats/
http://sourceforge.net/projects/honeystats/
http://sourceforge.net/projects/honeystats/
http://redmine.honeynet.org/projects/hpfeeds/wiki/
http://hpfeeds.honeycloud.net/

176

Proactive Detection of Security Incidents

Honeypots

9 Recommended honeypot solutions

As can be seen in Chapter 5, many of the tested honeypot solutions were found to either be
obsolete or otherwise not suitable for production-level use. Fortunately, there are exceptions.
This section of the report aims to point to solutions we found in our opinion to be most useful
for CERTs and other security teams. While the needs of a CERT or security team may be
different depending on its operational and research goals, we focus here on software that
comes, based on our tests and opinion, as the most useful ‘out of the box’ and ready for use.

9.1 The Quick Win

The ‘quick win’ (in terms of deployment) category covers essentially low-interaction server-
side honeypots. Testing conducted as part of the study has found that these solutions are the
most stable and easy-to-deploy group of honeypots. Nevertheless, they require that a CERT
has a network that it can use for deployment, as well as the possibility of configuring their
routers/firewalls/IDS/IPS systems to enable traffic to the honeypots from the outside.
Dionaea (see section 5.2.2.1.2), the successor of the very popular nepenthes honeypot, is the
low-interaction honeypot that comes most highly recommended, because of the variety of
services it supports (see Table 10) and good quality of emulation in comparison to another
available solutions (see also section
5.2.2.9). For Web attacks, Glastopf (see
section 5.2.2.2.3) comes among the most
highly recommended. If a higher focus on
SSH attacks is of interest, the Kippo (see
section 5.2.2.3.1) honeypot should be
considered. Honeyd (see section
5.2.2.1.4), on the other hand, despite its
age and lack of developer activity, is a
good, stable, all-round solution that can
easily be used in conjunction with other
honeypots as well as to create more
complex virtual networks.

The rest of the tested low-interaction
server solutions are largely redundant if
the above are used, at an early research
prototype level or simply out of date.
CERTs that wish to focus on detecting
attacks and collecting malware should
therefore consider first the honeypots
mentioned above. For those with
programming resources, dionaea,
Glastopf and Honeyd can be relatively
easily extended to handle attacks that are

Port Service Honeypot

21/TCP FTP Dionaea

22/TCP SSH Kippo

42/TCP WINS Dionaea

69/UDP TFTP Dionaea

80/TCP HTTP Glastopf

135/TCP MS Windows RPC Dionaea

445/TCP SMB Dionaea

443/TCP HTTPS Dionaea

1443/TCP MSSQL Dionaea

3306/TCP MySQL Dionaea

5060/UDP VoIP (SIP+SDP) Dionaea

8080/TCP HTTP Glastopf

Other Others at a basic level Honeyd
Table 10: Popular services and honeypots best suited

to handle attacks directed at them

177

Proactive Detection of Security Incidents

Honeypots

not covered with modules ‘out of the box’. Services to consider may include:

 Telnet (23/TCP)

 SMTP (25/TCP)

 DNS (53/UDP/TCP)

 HTTP Proxy (any port on which HTTP traffic appears)

Those who need to develop a network of honeypots functioning as sensors can consider the
SurfIDS solution (see section 5.4.3).

9.2 With additional effort

This category contains primarily client honeypots. In this category, we can consider a low-
interaction solution (Thug (see section 5.3.1.4)), one high-interaction solution (Capture-HPC
NG (see section 5.3.2.12)) and a client honeypot framework (HoneySpider Network 2.0 (see
section 5.4.1)). Thug is undergoing a continuous stream of changes, adapting technologies not
used so far in this area (such as the V8 engine), and therefore perhaps has the better outlook.
We found that Thug is useful primarily when verifying suspicious (or reported as malicious)
links rather than as a scanner that can be used to scan the Web as such or systematically
monitor a set of protected sites. This is because these sites tend to be more complex in
structure and technologies used, leading to crashes of the honeypot. Nevertheless, Thug is
being developed at a fast pace and this situation may improve soon.

Capture-HPC NG requires VM configuration to operate, but is reasonably stable and can be
used not just to systematically check suspicious links but to systematically monitor a set of
protected sites. The downside is that it requires tuning for the first few weeks of operation
and may signal false positives from time to time. A potential workaround may be to monitor
the network traffic generated through other tools and identify, for example, downloaded
executables.

HoneySpider Network 2.0 is intended as a framework that enables the addition of multiple
other client honeypots, crawlers and analysers – including those already mentioned in this
chapter. Hence it can leverage the strengths and weakness of these solutions.

9.3 For the researchers

This category covers the available high-interaction server honeypots. Unfortunately, these are
either obsolete (like Sebek (see section 5.2.1.5)) or not yet mature (Qebek (see section
5.2.1.4)). HiHAT (see section 5.2.1.2) requires some effort to operate, but probably currently
is still the most useful in this category, although focused only on Web attacks and not updated
since 2007. Overall, CERTs that can devote resources to high-interaction solutions and attack
detection should consider Argos (see section 5.2.1.1) as the most promising and actively
developed solution, which can also be the basis for high-interaction client honeypots.
However, without a considerable development and testing effort, none of these solutions are
suitable for everyday use by CERTs.

178

Proactive Detection of Security Incidents

Honeypots

10 Shortcomings, recommendations and future work

This chapter gives an overview of shortcomings of honeypot technologies and barriers for
their mass deployment by CERTs. It also provides recommendations on how to improve this
situation and looks into the possible future of honeypot research.

10.1 Barriers to usage and deployment

Honeypots are powerful tools in the security toolbox, enabling the detection and examination
of many types of attacks as well as allowing for insight into hacker behaviour. However, a
survey of CERTs which was part of the ‘Proactive Detection of Network Security Incidents’
study108 carried out by ENISA in 2011 found that honeypot usage in the CERT community was
not as popular as might be expected. Out of 16 different categories of tools, server-side
honeypots came seventh, while client-side honeypots came last in terms of popularity of
usage as tools to gather information from a network by CERTs (see Figure 39).

Figure 39: Survey responses concerning categories of tools used for network security incident

gathering

108

 K. Gorzelak, T. Grudziecki, P. Jacewicz, P. Jaroszewski, Ł. Juszczyk, P. Kijewski, A. Belasovs (eds) (2011), ‘Proactive Detection

of Network Security Incidents’, ENISA report, December 2011, available from
[http://www.enisa.europa.eu/activities/cert/support/proactive-detection/]

0

5

10

15

20

25

30

35

40

45

50

No answer

I never used it and will not use it.

I used it in the past, but dropped it.

I don't use it but plan to use it in future.

I use it

http://www.enisa.europa.eu/activities/cert/support/proactive-detection/
http://www.enisa.europa.eu/activities/cert/support/proactive-detection/
http://www.enisa.europa.eu/activities/cert/support/proactive-detection/
http://www.enisa.europa.eu/activities/cert/support/proactive-detection/
http://www.enisa.europa.eu/activities/cert/support/proactive-detection/
http://www.enisa.europa.eu/activities/cert/support/proactive-detection/
http://www.enisa.europa.eu/activities/cert/support/proactive-detection/
http://www.enisa.europa.eu/activities/cert/support/proactive-detection/
http://www.enisa.europa.eu/activities/cert/support/proactive-detection/
http://www.enisa.europa.eu/activities/cert/support/proactive-detection/
http://www.enisa.europa.eu/activities/cert/support/proactive-detection/
http://www.enisa.europa.eu/activities/cert/support/proactive-detection/
http://www.enisa.europa.eu/activities/cert/support/proactive-detection/
http://www.enisa.europa.eu/activities/cert/support/proactive-detection/
http://www.enisa.europa.eu/activities/cert/support/proactive-detection/
http://www.enisa.europa.eu/activities/cert/support/proactive-detection/
http://www.enisa.europa.eu/activities/cert/support/proactive-detection/
http://www.enisa.europa.eu/activities/cert/support/proactive-detection/
http://www.enisa.europa.eu/activities/cert/support/proactive-detection/
http://www.enisa.europa.eu/activities/cert/support/proactive-detection/

179

Proactive Detection of Security Incidents

Honeypots

Both types of honeypots had the most responses in the ‘have used in the past but dropped’
category. At the same time, both came very high in the ‘plan to use in the future’ category.
One reason for this may be a question of semantics: that is, as was pointed out during this
study by one of the experts, that many organisations deploy honeypots but do not call them
honeypots, especially in relation to client honeypots. For instance, using a wget crawler for
detecting malicious web pages may not be considered a honeypot, but certainly fits the
definition.

Nevertheless, our research and testing, combined with survey results, does seem to imply that
barriers exist for their mass deployment, despite the fact that the value is recognised in the
CERT community.

There are probably multiple reasons in general for this state of events:
1. Many of the open-source honeypots remain as hobby projects, often lacking any support

or community willing to sustain their development. Many are the result of projects that
had ‘temporary support’, such as graduate or Google Summer of Code109 projects. This
means that they are not easy to set up, unstable, not easily extensible, and poorly
documented, and quickly become outdated in the attacks that they can detect. Their
authors, once their researcher curiosity is satisfied or thesis finished, have little incentive
to continue. Unfortunately, perhaps due to the lack of a large user base, there is little
chance of someone else stepping into their place. The honeypots never reach the level of
maturity required for large- scale adoption and production production-level use by others.

2. Many open-source honeypots are difficult to use and it is difficult to interpret their results.
That is, their usage requires deeper knowledge than many other security solutions on the
market – open-source or commercial.

3. There is a lack of support tools that facilitate the analysis and interpretation of collected
data, making it difficult to interpret the attacks a honeypot collects.

4. There is a lack of standardisation of collected data. The existence of such standards would
make honeypots easier to use and make automatic translations between formats possible,
resulting in easier development and deployment of tools overall.

5. High-interaction honeypots are in general difficult to maintain, requiring considerable
resources (including considerable skill) to implement.

6. Honeypots do not monitor production-level traffic; that is, a network’s normal traffic. This
fact, an advantage in many ways (for example, a potential of low levels of false positives,
fewer privacy issues), means that they cannot detect attacks directed at production-level
services or be used to block certain attacks. Therefore, they are not viewed as essential in
a commercial setting.

7. Client honeypots are especially difficult to use. As a result of the fact that they have to
deal with many complex, fast-changing technologies, they tend to be both more unstable
and prone to missing attacks, than their server-side counterpart. Unlike server-side
honeypots, they do not deal with essentially what should be non-production traffic. This

109 For examples of Google Summer of Code Honeynet Project initiatives, see http://www.honeynet.org/gsoc

http://www.honeynet.org/gsoc

180

Proactive Detection of Security Incidents

Honeypots

means that they face a similar intrusion detection problem that classic IDS/IPS systems do:
how to identify malicious activity in a stream of otherwise benign activity, leading to
higher false negatives and positives.

8. Client honeypot problems (also throughput-related) have led some institutions interested
in bulk processing of URLs to favour the use of ‘real’ machines for infection, and
subsequently to monitor for any strange network traffic or use other tools to collect new
files created, rather than use unstable honeypot frameworks. They then do not consider
them honeypots, even though they provide identical functionality.

9. Security vendors have, in general, not embraced the notion of selling commercial
honeypots (although attempts have been made in the past). This may be because these
solutions are not viewed as essential for an organisation, as they do not monitor or block
production-level traffic. Therefore, few commercial honeypots exist.

10. Honeypots are seen as useful tools to gather knowledge about attacks – knowledge that
can then be applied to a network directly via other mechanisms that deal with production-
level traffic. As such they are seen as useful only for certain groups (specialised security
vendors, research organisations) that then apply such knowledge to other products (for
instance, in the form of threat signatures), which in turn are more relevant to end users.
That is, their end result is an increase in knowledge but not necessarily a sellable solution.
Theoretically, CERTs should be among this group. The reason many are not is perhaps that
most CERTs provide reactive, rather than proactive services. For CERTs that wish to
increase their awareness of threats in their constituency and proactively detect incidents,
honeypots are highly recommended.

11. A lot of the existing open-source solutions are very outdated and difficult to
compile/install on modern systems. Testing many solutions only to find they do not work
may discourage many institutions in attempting to use honeypots on their networks. We
hope that this study provides CERTs with enough insight to make an informed choice on
what to deploy.

12. Many national/governmental CERTs do not own or directly control a network where they
can deploy their own honeypots, server- or client-side.

13. Finally, there are potential legal and ethical issues with using honeypots, which may deter
CERTs from adopting them. For example: liability concerns – what happens if a honeypot is
used to successfully attack another system? Unfortunately, these kinds of issues are very
jurisdiction-specific. They are poorly explored in general, but beyond the scope of this
study.

10.2 General Recommendations for CERTs

Overall, the study has found that honeypot technologies, while sometimes difficult to handle,
are a good source of security information for CERTs. The following are general
recommendations for CERTs that can help foster the adoption of honeypots as well as to aid
the development of honeypot technologies:
1. The increasing number of complex attacks demands improved early warning self-detection

capabilities for CERTs. Having threat intelligence collected without any impact on

181

Proactive Detection of Security Incidents

Honeypots

production infrastructure, enables CERTs to better defend their constituency’s assets.
Honeypots can be an excellent source of threat intelligence information.

2. CERTs are encouraged to explore the possibility of deploying honeypots across their
constituencies. Using honeypots as sensors can be easier than other technologies, as they
do not monitor production-level traffic, making privacy issues a smaller concern. We
recommend using honeypot technologies identified as the most useful in this study as
specified in Chapter 9. Nevertheless CERTs should review appropriate laws with legal
counsel to gain a better understanding of potential legal concerns with honeypot
deployment.

3. CERTs should plan for how they will handle any vulnerabilities or incidents within their
network discovered through the use of a honeypot. Or what they will do if the honeypot is
compromised and used as a base for the intruder to attack other systems or sites.

4. CERTs need to cooperate and develop large scale interconnected sensor networks in order
to collect threat intelligence from multiple geographic areas.110 Honeypots are one of the
technologies that can be used for that purpose.

5. CERTs are encouraged to take part in the development of honeypots and in providing
feedback to honeypot developers. For this reason, CERTs are encouraged to join honeypot
initiatives – whether through projects at the European or national level or through
organisations operating on a global level, such as the US-based non-profit Honeynet
Project (see section 6.1), which has Chapters around the world.

10.3 Future development and research

Honeypots currently face a variety of technical challenges. During the study, it was pointed
out that client honeypots, for instance, tend to focus on drive-by download detection. Entire
classes of attacks, such as XSS,111 click fraud for example, are not captured. Social engineering
attacks are also not covered. Another area of research involves weaknesses in emulation. This
includes, for example: weakness in the DOM (Document Object Model) implementation,
keeping up with emerging Web technologies, and no emulation of user behaviour.

Detection and evasion techniques are also increasingly becoming a problem (sometimes also
linked to emulation issues). None of the tested client and server-side honeypots employs any
anti-fingerprint techniques. Both types can therefore be detected with relative ease by an
attacker. ‘Dynamic’ honeypots/nets have been proposed to alleviate part of the problem:
honeypot operators can scan a network and set up a honeypot that looks the same as the
network. They then keep scanning the network systematically in a passive or active manner
and set a change threshold and update the honeypot if the threshold is reached. This makes
detection harder as it is ephemeral and it also matches an existing production network.

Another challenge is non-blind attacks against certain services, such as web servers and
applications. As these are inherently targeted against production services (rather than

110 Example of a successful project implementing a distributed honeynet: http://honeytarg.cert.br/honeypots/

111 Cross-site scripting attacks

http://technet.microsoft.com/en-us/security/bulletin/ms12-020
http://technet.microsoft.com/en-us/security/bulletin/ms12-020
http://technet.microsoft.com/en-us/security/bulletin/ms12-020
http://technet.microsoft.com/en-us/security/bulletin/ms12-020
http://technet.microsoft.com/en-us/security/bulletin/ms12-020
http://technet.microsoft.com/en-us/security/bulletin/ms12-020
http://technet.microsoft.com/en-us/security/bulletin/ms12-020
http://technet.microsoft.com/en-us/security/bulletin/ms12-020
http://technet.microsoft.com/en-us/security/bulletin/ms12-020
http://technet.microsoft.com/en-us/security/bulletin/ms12-020
http://technet.microsoft.com/en-us/security/bulletin/ms12-020
http://technet.microsoft.com/en-us/security/bulletin/ms12-020
http://technet.microsoft.com/en-us/security/bulletin/ms12-020
http://technet.microsoft.com/en-us/security/bulletin/ms12-020
http://honeytarg.cert.br/honeypots/
http://honeytarg.cert.br/honeypots/
http://honeytarg.cert.br/honeypots/
http://honeytarg.cert.br/honeypots/
http://honeytarg.cert.br/honeypots/
http://honeytarg.cert.br/honeypots/
http://honeytarg.cert.br/honeypots/
http://honeytarg.cert.br/honeypots/
http://honeytarg.cert.br/honeypots/
http://honeytarg.cert.br/honeypots/

182

Proactive Detection of Security Incidents

Honeypots

through blind IP-range scanning), these attacks become more difficult to detect. Certain types
of threats that use search engines as seeds for obtaining targets can be detected, by allowing
honeypots to be indexed. Deployment of such honeypots demands additional effort.

As attacks become more and more targeted, honeypots will face increasing challenges in their
detection, related to the difficulty of placing them in the path of the attack. A possible
direction of evolution is to apply concepts such as ‘shadow honeypots’.112 These can be seen
as a combination of anomaly detectors and honeypots. The honeypots are essentially a copy
of the production software that they are designed to protect, enhanced with additional
detection mechanisms. The anomaly detectors, deployed across networks, can redirect traffic
classified as suspicious to an instance of the shadow honeypot, which can process the
requests and verify their maliciousness.

New platforms and attacks will result in the creation of new honeypot solutions. For instance,
RDP attacks that occurred in 2011 exploiting the MS12-020113 vulnerability resulted in the
quick appearance of RDP honeypots114 to detect and analyse these attacks. A similar finding
was obtained in an academic honeypot study from Southern Illinois University in the USA. The
literature review of this study identified honeypot research to be in five main areas: a) new
types of honeypots to cope with emergent new security threats, b) utilising honeypot output
data to improve the accuracy in threat detections, c) configuring honeypots to reduce the cost
of maintaining honeypots as well as to improve the accuracy in threat detections, d)
counteracting honeypot detections by attackers, and e) legal and ethical issues in using
honeypots.115

Experts in the working group pointed to specific types of attacks and platforms that will be the
area of increasing honeypot research:

 mobile platforms (mobile honeypots),
 IPv6 specific attacks and malware,
 network device/router malware,
 ICS/SCADA attacks,
 virtualisation platforms (virtualisation specific attacks),
 social networks,
 medical device firmware.

The development of a similar group of technologies (sandboxes), originally used to study
malware, such as the Cuckoo Sandbox (see section 7.1.1), may in the future contribute to the
development of more stable high-interaction honeypot solutions.

112 Kostas G. Anagnostakis, Stelios Sidiroglou, Periklis Akritidis, Michalis Polychronakis, Angelos D. Keromytis, Evangelos P.
Markatos (2010), ‘Shadow Honeypots’, September 2010, available from
[http://www.ics.forth.gr/dcs/Activities/papers/shadow.honeypots.ijcns.pdf]

113 http://technet.microsoft.com/en-us/security/bulletin/ms12-020

114 http://samsclass.info/123/proj10/rdp-honeypot.htm

115 Matthew L. Bringer, Christopher A. Chelmecki, Hiroshi Fujinoki, ‘A Survey: Recent Advances and Future Trends in Honeypot
Research’, available from [http://www.mecs-press.org/ijcnis/ijcnis-v4-n10/IJCNIS-V4-N10-7.pdf]

http://www.ics.forth.gr/dcs/Activities/papers/shadow.honeypots.ijcns.pdf
http://www.ics.forth.gr/dcs/Activities/papers/shadow.honeypots.ijcns.pdf
http://www.ics.forth.gr/dcs/Activities/papers/shadow.honeypots.ijcns.pdf
http://www.ics.forth.gr/dcs/Activities/papers/shadow.honeypots.ijcns.pdf
http://www.ics.forth.gr/dcs/Activities/papers/shadow.honeypots.ijcns.pdf
http://www.ics.forth.gr/dcs/Activities/papers/shadow.honeypots.ijcns.pdf
http://www.ics.forth.gr/dcs/Activities/papers/shadow.honeypots.ijcns.pdf
http://www.ics.forth.gr/dcs/Activities/papers/shadow.honeypots.ijcns.pdf
http://www.ics.forth.gr/dcs/Activities/papers/shadow.honeypots.ijcns.pdf
http://www.ics.forth.gr/dcs/Activities/papers/shadow.honeypots.ijcns.pdf
http://www.ics.forth.gr/dcs/Activities/papers/shadow.honeypots.ijcns.pdf
http://www.ics.forth.gr/dcs/Activities/papers/shadow.honeypots.ijcns.pdf
http://www.ics.forth.gr/dcs/Activities/papers/shadow.honeypots.ijcns.pdf
http://www.ics.forth.gr/dcs/Activities/papers/shadow.honeypots.ijcns.pdf
http://www.ics.forth.gr/dcs/Activities/papers/shadow.honeypots.ijcns.pdf
http://www.ics.forth.gr/dcs/Activities/papers/shadow.honeypots.ijcns.pdf
http://www.ics.forth.gr/dcs/Activities/papers/shadow.honeypots.ijcns.pdf
http://www.ics.forth.gr/dcs/Activities/papers/shadow.honeypots.ijcns.pdf
http://www.ics.forth.gr/dcs/Activities/papers/shadow.honeypots.ijcns.pdf
http://www.ics.forth.gr/dcs/Activities/papers/shadow.honeypots.ijcns.pdf
http://www.ics.forth.gr/dcs/Activities/papers/shadow.honeypots.ijcns.pdf
http://www.ics.forth.gr/dcs/Activities/papers/shadow.honeypots.ijcns.pdf
http://www.ics.forth.gr/dcs/Activities/papers/shadow.honeypots.ijcns.pdf
http://technet.microsoft.com/en-us/security/bulletin/ms12-020
http://technet.microsoft.com/en-us/security/bulletin/ms12-020
http://technet.microsoft.com/en-us/security/bulletin/ms12-020
http://technet.microsoft.com/en-us/security/bulletin/ms12-020
http://technet.microsoft.com/en-us/security/bulletin/ms12-020
http://technet.microsoft.com/en-us/security/bulletin/ms12-020
http://technet.microsoft.com/en-us/security/bulletin/ms12-020
http://technet.microsoft.com/en-us/security/bulletin/ms12-020
http://technet.microsoft.com/en-us/security/bulletin/ms12-020
http://technet.microsoft.com/en-us/security/bulletin/ms12-020
http://technet.microsoft.com/en-us/security/bulletin/ms12-020
http://technet.microsoft.com/en-us/security/bulletin/ms12-020
http://technet.microsoft.com/en-us/security/bulletin/ms12-020
http://technet.microsoft.com/en-us/security/bulletin/ms12-020
http://technet.microsoft.com/en-us/security/bulletin/ms12-020
http://technet.microsoft.com/en-us/security/bulletin/ms12-020
http://technet.microsoft.com/en-us/security/bulletin/ms12-020
http://technet.microsoft.com/en-us/security/bulletin/ms12-020
http://samsclass.info/123/proj10/rdp-honeypot.htm
http://www.mecs-press.org/ijcnis/ijcnis-v4-n10/IJCNIS-V4-N10-7.pdf

183

Proactive Detection of Security Incidents

Honeypots

Finally, another area that needs research in the eyes of honeypot experts is how to better pull
meaning out of all the data collected by honeypot instances, through analysis, visualisation
etc. The development of easy-to-use tools in this area would also be a boost to the popularity
of honeypots.

184

Proactive Detection of Security Incidents

Honeypots

11 Conclusion

The `Proactive Detection of Security Incidents: Honeypot` is the first study of its kind of the
usefulness of the application of honeypot technology to CERT work. Unlike previous academic
studies concerning the honeypot topic, we have attempted to take a very practical approach
at evaluating existing honeypot solutions. To reach this goal, new criteria based on practicality
were introduced (see section 5.1). They were used to test over 30 downloadable and freely
available standalone honeypot solutions, leading to the creation of a large inventory of
honeypots. Specific honeypots, such as dionaea (see section 5.2.2.1.2), Glastopf (see section
5.2.2.2.3), kippo (see section 5.2.2.3.1) and Honeyd (see section 5.2.2.1.4), were identified as
being most useful and recommended for immediate deployment by CERTs. For those CERTs
that can devote more resources to maintaining their honeypot deployments, but in exchange
gain the capability to detect malicious websites, client honeypots such as Thug (see section
5.3.1.4) and Capture-HPC NG (see section 5.3.2.1) are found to be worth considering. Finally,
for those able to devote resources to research and further development, Argos (see section
5.2.1.1) and the development of client honeypots based on the Cuckoo sandbox (see section
7.1.1) are possible selections.

Additionally, multiple solutions that build upon honeypots or act as support tools were also
reviewed. SURFcert IDS (see section 5.4.3) is recommended for easy deployment and
management of a network of sensors. In the study, we also present common deployment
strategies for these honeypots, identify technology shortcomings and possible ways of
mitigating them as well as possible future research.

There is no doubt that honeypots are an essential part of the CERT toolkit. They offer great
insight into malicious activity in a CERT’s constituency, providing early warning of malware
infections, new exploits, vulnerabilities and malware behaviour as well as an excellent
opportunity to learn about changes in attacker tactics. Honeypots are excellent solutions that
can be used as a basis for creating larger systems based on networks of sensors or act as feeds
for already deployed SIEM tools. They can also be used to help mitigate the insider threat. The
software to achieve all this is already available – for free. Having all this threat intelligence
information enables CERTs to better protect their constituency’s assets. It has to be stressed
that CERTs can also have great influence on how these technologies evolve and how they can
be customised to simplify their usage, thus allowing them to be adopted on a greater scale.
CERTs are therefore encouraged to actively take part in the communities identified in this
study, providing their feedback to researchers involved in development of honeypots and
related technologies or even engaging in development directly themselves. We hope that this
study will help in this process, leading to improved tools that can be used by the security
community to combat cyber threats.

185

Proactive Detection of Security Incidents

Honeypots

12 Annex I: Abbreviations

API Application Programming Interface

APT Advanced Persistent Threat

AS Autonomous System

ASN Autonomous System Number

AV Anti-Virus

BSD Berkeley Software Distribution

C&C server Command and Control server

CAPTCHA Completely Automated Public Turing test to tell Computers and Humans Apart

CERT Computer Emergency Response Team

CIDR Classless Inter-Domain Routing

CLI Command Line Interface

CLSID Class-ID Definition

CMS Content Management System

CPAN Comprehensive Perl Archive Network

CPU Central Processing Unit

CSIRT Computer Security Incident Response Team

CSV Comma-Separated Values

DCS Distributed Control System

DDoS Distributed Denial of Service

DHCP Dynamic Host Configuration Protocol

DLP Data Loss Prevention

DMZ Demilitarised Zone

DNP3 Distributed Network Protocol

DNS Domain Name System

DOM Document Object Model

DoS Denial of Service

ENISA European Network and Information Security Agency

EU European Union

EWS Early Warning System

FIRST Forum of Incident Response and Security Teams

FTP File Transfer Protocol

GCC Gnu Compiler Collection

GPG GNU Privacy Guard

GPL General Public Licence

GUI Graphical User Interface

186

Proactive Detection of Security Incidents

Honeypots

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

HTTPS HyperText Transfer Protocol Secure

ICCP Inter-Control Center Communications Protocol

ICS Industrial Control Systems

IDS Intrusion Detection System

IODEF the Incident Object Description Exchange Format

IP Internet Protocol

IPS Intrusion Prevention System

IRC Internet Relay Chat

ISP Internet Service Provider

JSON JavaScript Object Notation

KVM Kernel-based Virtual Machine

L2CAP Logical Link Control and Adaptation Protocol

LAN Local Area Network

MAEC Malware Attribute Enumeration and Characterisation

MS Member State

MTA Mail Transfer Agent

MUA Mail User Agent

MX record Mail eXchanger record in DNS

NREN National Research and Education Network

NTP Network Time Protocol

OBEX OBject EXchange

OSI model Open Systems Interconnection model

PCAP Packet Capture

PHP PHP: Hypertext Preprocessor

PID Process ID

PLC Programmable Logic Controller

PGP Pretty Good Privacy

RDP Remote Desktop Protocol

RFCOMM Radio Frequency Communication

RSS Really Simple Syndication

SCADA Supervisory Control and Data Acquisition

SCP Secure Copy

SDP Session Description Protocol

SFTP Secure File Transfer Protocol

SIEM Security Information and Event Management

187

Proactive Detection of Security Incidents

Honeypots

SIP Session Initiation Protocol

SMB Server Message Block

SMS Short Message Service

SMTP Simple Mail Transfer Protocol

SPIT Spam over Internet Telephony

SQL Structured Query Language

SSH Secure Shell

TCP Transmission Control Protocol

TFTP Trivial File Transfer Protocol

TLS Transport Layer Security

TTL Time To Live

UDP User Datagram Protocol

URL Uniform Resource Locator

USB Universal Serial Bus (often short for USB flash drive)

UTC Coordinated Universal Time

VoIP Voice over IP

WAPI Wombat API

WAF Web Application Firewall

2

Proactive Detection of Security Incidents

Honeypots

P.O. Box 1309, 71001 Heraklion, Greece
www.enisa.europa.eu

