
Hindawi Publishing Corporation
EURASIP Journal on Wireless Communications and Networking
Volume 2009, Article ID 692654, 11 pages
doi:10.1155/2009/692654

Review Article

Botnet: Classification, Attacks, Detection, Tracing,
and Preventive Measures

Jing Liu,1 Yang Xiao,1 Kaveh Ghaboosi,2 Hongmei Deng,3 and Jingyuan Zhang1

1 Department of Computer Science, The University of Alabama, Tuscaloosa, AL 35487-0290, USA
2 The Centre for Wireless Communications, University of Oulu, P.O. Box 4500, FI-90014, Finland
3 Intelligent Automation, Inc., Rockville, MD 20855, USA

Correspondence should be addressed to Yang Xiao, yangxiao@ieee.org

Received 25 December 2008; Revised 17 June 2009; Accepted 19 July 2009

Recommended by Yi-Bing Lin

Botnets become widespread in wired and wireless networks, whereas the relevant research is still in the initial stage. In this paper,
a survey of botnets is provided. We first discuss fundamental concepts of botnets, including formation and exploitation, lifecycle,
and two major kinds of topologies. Several related attacks, detection, tracing, and countermeasures, are then introduced, followed
by recent research work and possible future challenges.

Copyright © 2009 Jing Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

The untraceable feature of coordinated attacks is just what
hackers/attackers demand to compromise a computer or a
network for their illegal activities. Once a group of hosts at
different locations controlled by a malicious individual or
organization to initiate an attack, one can hardly trace back
to the origin due to the complexity of the Internet. For this
reason, the increase of events and threats against legitimate
Internet activities such as information leakage, click fraud,
denial of service (DoS) and attack, E-mail spam, etc., has
become a very serious problem nowadays [1]. Those victims
controlled by coordinated attackers are called zombies or
bots which derives from the word “robot.” The term of bots
is commonly referred to software applications running as an
automated task over the Internet [2]. Under a command and
control (C2, or C&C) infrastructure, a group of bots are able
to form a self-propagating, self-organizing, and autonomous
framework, named botnet [3]. Generally, to compromise a
series of systems, the botnet’s master (also called as herder
or perpetrator) will remotely control bots to install worms,
Trojan horses, or backdoors on them [3]. The majority of
those victims are running Microsoft Windows operating
system [3]. The process of stealing host resources to form a
botnet is so called “scrumping” [3].

Fortunately, botnet attacks and the corresponding pre-
ventive measures or tracking approaches have been studied
by industry and academia in last decades. It is known that
botnets have thousands of different implementations, which
can be classified into two major categories based on their
topologies [4]. One typical and the most common type is
Internet Relay Chat-(IRC-) based botnets. Because of its cen-
tralized architecture, researchers have designed some feasible
countermeasures to detect and destroy such botnets [5, 6].
Hence, newer and more sophisticated hackers/attackers start
to use Peer to Peer (P2P) technologies in botnets [4, 7].
P2P botnets are distributed and do not have a central point
of failure. Compared to IRC-based botnets, they are more
difficult to detect and take down [4]. Besides, most of its
existing studies are still in the analysis phase [4, 7].

Scholars firstly discovered botnets due to the study on
Distributed DoS (DDoS) attacks [8]. After that, botnet
features have been disclosed using probing and Honeypots
[9–11]. Levy [12] mentioned that spammers increasingly
relied on bots to generate spam messages, since bots can hide
their identities [13]. To identify and block spam, blacklists
are widely used in practice. Jung and Sit [14] found that
80% of spammers could be detected by blacklists of MIT
in 2004. Besides, blacklists also impact on other hostile
actions. Through examining blacklist abuse by botnet’s



2 EURASIP Journal on Wireless Communications and Networking

masters, Ramachandran et al. [15] noted that those masters
with higher premiums on addresses would not present on
blacklists. Thus, only deploying blacklists may be not enough
to address the botnet problem.

So far, industry and much of academia are still engaged
in damage control via patch-management rather than
fundamental problem solving. In fact, without innovative
approaches to removing the botnet threat, the full utility of
the Internet for human beings will still be a dream. The major
objective of this paper is to exploit open issues in botnet
detection and preventive measures through exhaustive anal-
ysis of botnets features and existing researches.

The rest of this paper is organized as follows. In Section 2,
we provide a background introduction as well as the
botnet classification. Section 3 describes the relevant attacks.
Section 4 elaborates on the detection and tracing mecha-
nisms. We introduce preventive measures in Section 5. The
conclusion and future challenges are discussed in Section 6.

2. Classification

Botnets are emerging threats with billions of hosts worldwide
infected. Bots can spread over thousands of computers at
a very high speed as worms do. Unlike worms, bots in a
botnet are able to cooperate towards a common malicious
purpose. For that reason, botnets nowadays play a very
important role in the Internet malware epidemic [16].
Many works try to summarize their taxonomy [17, 18],
using properties such as the propagation mechanism, the
topology of C2 infrastructure used, the exploitation strategy,
or the set of commands available to the perpetrator. So
far, botnet’s master often uses IRC protocol to control and
manage the bots. For the sake of reducing botnet’s threat
efficiently, scholars and researchers emphasize their studies
on detecting IRC-based botnets. Generally speaking, the
academic literature on botnet detection is sparse. In [19],
Strayer et al. presented some metrics by flow analysis on
detecting botnets. After filtering IRC session out of the traffic,
flow-based methods were applied to discriminate malicious
from benign IRC channels. The methods proposed by [20,
21] combined both application and network layer analysis.
Cooke et al. [22] dealt with IRC activities at the application
layer, using information coming from the monitoring of
network activities. Some authors had introduced machine
learning techniques into botnet detection [23], since they led
a better way to characterize botnets. Currently, honeynets
and Intrusion Detection System (IDS) are two major tech-
niques to prevent their attacks. Honeynets can be deployed
in both distributed and local context [9]. They are capable
of providing botnet attacking information but cannot tell
the details such as whether the victim has a certain worm
[9]. The IDS uses the signatures or behavior of existing
botnets for reference to detect potential attacks. Thus, to
summarize the characteristics of botnets is significant for
secure networks. To the best of our knowledge, we have not
found any other work about anomaly-based detection for
botnets. Before going to the discussion of botnet attacks and
preventive measures, we will introduce some relevant terms
and classification of bots in the rest of this section.

2.1. Formation and Exploitation. To illustrate the formation
and exploitation, we take a spamming botnet as an example.
A typical formation of botnet can be described by the
following steps [3], as shown in Figure 1.

(1) The perpetrator of botnet sends out worms or viruses
to infect victims’ machines, whose payloads are bots.

(2) The bots on the infected hosts log into an IRC server
or other communications medium, forming a botnet.

(3) Spammer makes payment to the owner of this botnet
to gain the access right.

(4) Spammer sends commands to this botnet to order the
bots to send out spam.

(5) The infected hosts send the spam messages to various
mail servers in the Internet.

Botnets can be exploited for criminally purposes or just
for fun, depending on the individuals. The next section will
go into the details of various exploitations.

2.2. Botnet Lifecycle. Figure 2 shows the lifecycle of a botnet
and a single bot [16].

2.3. IRC-Based Bot. IRC is a protocol for text-based instant
messaging among people connected with the Internet. It is
based on Client/Server (C/S) model but suited for distributed
environment as well [18]. Typical IRC severs are intercon-
nected and pass messages from one to another [18]. One can
connect with hundreds of clients via multiple servers. It is
so-called multiple IRC (mIRC), in which communications
among clients and a server are pushed to those who are
connected to the channel. The functions of IRC-based bots
include managing access lists, moving files, sharing clients,
sharing channel information, and so on [18]. Major parts of
a typical IRC bot attack are showed in Figure 3 [18].

(i) Bot is typically an executable file triggered by a
specific command from the IRC sever. Once a bot
is installed on a victim host, it will make a copy
into a configurable directory and let the malicious
program to start with the operating system.
Consider Windows as an instance, the bots sized
no more than 15 kb are able to add into the system
registry (HKEY LOCAL MACHINE\SOFTWARE
\Microsoft\Windows\CurrentVerssion\Run\) [18].
Generally, bots are just the payload of worms or the
way to open a backdoor [18].

(ii) Control channel is a secured IRC channel set up by the
attacker to manage all the bots.

(iii) IRC Server may be a compromised machine or even a
legitimate provider for public service.

(iv) Attacker is the one who control the IRC bot attack.

The attacker’s operations have four stages [16].

(1) The first one is the Creation Stage, where the attacker
may add malicious code or just modify an existing
one out of numerous highly configurable bots over
the Internet [16].



EURASIP Journal on Wireless Communications and Networking 3

1 2

54

3

Figure 1: Using a botnet to send spam [3].

(2) The second one is the Configuration Stage, where the
IRC server and channel information can be collected
[16]. As long as the bot is installed on the victim, it
will automatically connect to the selected host [16].
Then, the attacker may restrict the access and secure
the channel to the bots for business or some other
purpose [16]. For example, the attacker is able to
provide a list of bots for authorized users who want
to further customize and use them for their own
purpose.

(3) The third one is the Infection Stage, where bots are
propagated by various direct and indirect means
[16]. As the name implies, direct techniques exploit
vulnerabilities of the services or operating systems
and are usually associated with the use of viruses
[16]. While the vulnerable systems are compromised,
they continue the infection process such that saving
the time of attacker to add other victims [16]. The
most vulnerable systems are Windows 2000 and XP
SP1, where the attacker can easily find unpatched
or unsecured (e.g., without firewall) hosts [16]. By
contrary, indirect approaches use other programs as
a proxy to spread bots, that is, using distributed
malware through DCC (Direct Client-to-Client) file
exchange on IRC or P2P networks to exploit the
vulnerabilities of target machines [16].

(4) The forth one is the Control Stage, where the attacker
can send the instructions to a group of bots via IRC
channel to do some malicious tasks.

2.4. P2P-Based Bot. Few papers focus on P2P-based bots
so far [4, 24–30]. It is still a challenging issue. In fact,
using P2P ad hoc network to control victim hosts is not
a novel technique [26]. A worm with a P2P fashion,
named Slapper [27], infected Linux system by DoS attack
in 2002. It used hypothetical clients to send commands
to compromised hosts and receive responses from them
[27]. Thereby, its network location could be anonymous
and hardly be monitored [27]. One year after, another
P2P-based bot appeared, called Dubbed Sinit [28]. It used
public key cryptography for update authentication. Later,

in 2004, Phatbot [29] was created to send commands to
other compromised hosts using a P2P system. Currently,
Storm Worm [24] may be the most wide-spread P2P bot
over the Internet. Holz et al. have analyzed it using binary
and network tracing [24]. Besides, they also proposed some
techniques to disrupt the communication of a P2P-based
botnet, such as eclipsing content and polluting the file.

Nevertheless, the above P2P-based bots are not mature
and have many weaknesses. Many P2P networks have a
central server or a seed list of peers who can be contacted for
adding a new peer. This process named bootstrap has a single
point of failure for a P2P-based botnet [25]. For this reason,
authors in [25] presented a specific hybrid P2P botnet to
overcome this problem.

Figure 4 presents the C2 architecture of the hybrid P2P-
based botnet proposed by [25]. It has three client bots and
five servant bots, who behave both as clients and servers in
a traditional P2P file sharing system. The arrow represents a
directed connection between bots. A group of servant bots
interconnect with each other and form the backbone of the
botnet. An attacker can inject his/her commands into any
hosts of this botnet. Each host periodically connects to its
neighbors for retrieving orders issued by their commander.
As soon as a new command shows up, the host will forward
this command to all nearby servant bots immediately. Such
architecture combines the following features [25]: (1) it
requires no bootstrap procedure; (2) only a limited number
of bots nearby the captured one can be exposed; (3) an
attacker can easily manage the entire botnet by issuing a
single command. Albeit the authors in [25] proposed several
countermeasures against this botnet attack, more researches
on both architecture and prevention means are still needed
in the future. The relevant future work will be discussed in
Section 6.

2.5. Types of Bots. Many types of bots in the network have
already been discovered and studied [9, 16, 17]. Table 1 will
present several widespread and well-known bots, together
with their basic features. Then, some typical types will be
studied in details.

2.5.1. Agobot. This well-known bot is written in C/C++
with cross-platform capabilities [9]. It is the only bot so
far that utilizes a control protocol in IRC channel [9].
Due to its standard data structures, modularity, and code
documentation, Agobot is very easy for attacker to extend
commands for their own purposes by simply adding new
function into the CCommandHandler or CScanner class [9].
Besides, it has both standard and special IRC commands for
harvesting sensitive information [17]. For example, it can
request the bot to do some basic operations (accessing a
file on the compromised machine by “bot.open” directive)
[17]. Also, Agobot is capable of securing the system via
closing NetBIOS shares, RPC-DCOM, for instance [17].
It has various commands to control the victim host, for
example, using “pctrl” to manage all the processes and using
“inst” to manage autostart programs [17]. In addition, it has
the following features [17]: (1) it is IRC-based C2 framework,



4 EURASIP Journal on Wireless Communications and Networking

Bot herder configures initial bot parameters such
as infection, stealth, vectors, payload, C2 details 

Register DDNS

Bot herder launches or seeds new bot (s)

Bots propagation

Losing bots to other botnets

Stasis-not growing

Abandon botnet and sever traces

Unregister DDNS

Botnet lifecycle

Establish C2

Scanning for vulnerable
targets to install bots 

Take-down

Recovery from take-down

Upgrade with new bot code

Idle

Single bot lifecycle

Figure 2: Lifecycle of a Botnet and of a single Bot [16].

Attacker

IRC
servers 

Victims

Botnet

Bots

Figure 3: Major parts of a typical IRC Bot attack [18].

Client bots

Servant bots

Figure 4: The C2 architecture of a hybrid P2P botnet proposed by
[25].

(2) it can launch various DoS attacks, (3) it can attack a
large number of targets, (4) it offers shell encoding function
and limits polymorphic obfuscations, (5) it can harvest the
sensitive information via traffic sniffing (using libpcap, a
packet sniffing library [9]), key logging or searching registry
entries, (6) it can evade detection of antivirus software
either through patching vulnerabilities, closing back doors
or disabling access to anti-virus sites (using NTFS Alternate
Data Stream to hide its presence on victim host [9]), and
(7) it can detect debuggers (e.g., SoftIce and Ollydbg) and
virtual machines (e.g., VMware and Virtual PC) and thus
avoid disassembly [9, 17].

To find a new victim, Agobot just simply scans across a
predefined network range [17]. Nevertheless, it is unable to
effectively distribute targets among a group of bots as a whole
based on current command set [17].

2.5.2. SDBot. SDBot’s source code is not well written in
C and has no more than 2500 lines, but its command set
and features are similar to Agobot [9, 17]. It is published
under GPL [9, 17]. Albeit SDBot has no propagation
capability and only provides some basic functions of host
control, attackers still like this bot since its commands are
easy to extend [17]. In addition, SDBot has its own IRC
functions such as spying and cloning [17]. Spying is just
recording the activities of a specified channel on a log file
[17]. Cloning means that the bot repeats to connect one
channel [17]. At present, SDBot may be the most active
bot used in the wild [9]. There are plenty of auxiliary
patches available on the Internet, including non-malicious
ones [17].



EURASIP Journal on Wireless Communications and Networking 5

Table 1: Types of bots.

Types Features

Agobot

Phatbot
They are so prevalent that over 500 variants exist in the Internet today. Agobot is the only bot that can use other
control protocols besides IRC [9]. It offers various approaches to hide bots on the compromised hosts,
including NTFS Alternate Data Stream, Polymorphic Encryptor Engine and Antivirus Killer [16].Forbot

Xtrembot

SDBot

RBot SDBot is the basis of the other three bots and probably many more [9]. Different from Agobot, its code is
UrBot unclear and only has limited functions. Even so, this group of bots is still widely used in the Internet [16].

UrXBot

SpyBot

NetBIOS
There are hundreds of variants of SpyBot nowadays [17]. Most of their C2 frameworks appear to be shared with

Kuang or evolved from SDBot [17]. But it does not provide accountability or conceal their malicious purpose in
Netdevil codebase [17].

KaZaa

mIRC-based GT (Global Threat) bot is mIRC-based bot. It enables a mIRC chat-client based on a set of binaries (mainly

GT-Bots DLLs) and scripts [16]. It often hides the application window in compromised hosts to make mIRC invisible to
the user [9].

DSNX Bots The DSNX (Data Spy Network X) bot has a convenient plug-in interface for adding a new function [16]. Albeit
the default version does not meet the requirement of spreaders, plugins can help to address this problem [9].

Q8 Bots It is designed for Unix/Linux OS with the common features of a bot, such as dynamic HTTP updating, various
DDoS-attacks, execution of arbitrary commands and so forth. [9].

Kaiten It is quite similar to Q8 Bots due to the same runtime environment and lacking of spreader as well. Kaiten has
an easy remote shell, thus it is convenient to check further vulnerabilities via IRC [9].

Perl-based bots
Many variants written in Perl nowadays [9]. They are so small that only have a few hundred lines of the bots
code [9]. Thus, limited fundamental commands are available for attacks, especially for DDoS-attacks in
Unix-based systems [9].

SDBot’s is essentially a compact IRC implementation
[17]. To contact the IRC server, it first sends identity
information, for example, USER and NICK [17]. As long
as it gets an admission message (PING) from the server, the
bot will acknowledge this connection with a PONG response
[17]. While the bot receives the success code (001 or 005) for
connection, it can request a hostname by USERHOST and
join the channel by JOIN message [17]. Once it receives a
response code 302, this bot has successfully participated in
the IRC channel and the master can control it via some IRC
commands (e.g., NOTICE, PRIVMSG, or TOPIC) [17].

With the help of many powerful scanning tools, SDBot
can easily find the next victim [17]. For instance, using
NetBIOS scanner, it can randomly choose a target located in
any predefined IP range [17]. Since the SDBot is able to send
ICMP and UDP packets, it is always used for simple flooding
attacks [17]. Moreover, a large number of variants capable of
DDoS attack are available in the wild [17].

2.5.3. SpyBot. SpyBot is written in C with no more than
3,000 lines, and has pretty much variants nowadays as
well [17]. As a matter of fact, SpyBot is enhanced version
of SDBot [17]. Besides the essential command language
implementation, it also involves the scanning capability,
host control function, and the modules of DDoS attack

and flooding attack (e.g., TCP SYN, ICMP, and UDP)
[17]. SpyBot’s host control capabilities are quite similar
to Agobot’s in remote command execution, process/system
manipulation, key logging, and local file manipulation [17].
Nevertheless, SpyBot still does not have the capability
breadth and modularity of Agobot [17].

2.5.4. GT Bot. GT (Global Threat) Bot, as known as Aristo-
tles, is supposed to stand for all mIRC-based bots which have
numerous variants and are widely used for Windows [9, 17].
Besides some general capabilities such as IRC host control,
DoS attacks, port scanning, and NetBIOS/RPC exploiting,
GT Bot also provides a limited set of binaries and scripts
of mIRC [9, 17]. One important binary is HideWindow
program used to keep the mIRC instance invisible from the
user [9, 17]. Another function is recording the response to
each command received by remote hosts [17]. Some other
binaries mainly extend the functions of mIRC via DDL
(Dynamic Link Library) [9]. These scripts often store in files
with “.mrc” extension or in “mirc.ini” [9, 17]. Although the
binaries are almost all named as “mIRC.exe”, they may have
different capabilities due to distinct configuration files [17].
Compared to the above instances, GT Bot only provides lim-
ited commands for host control, just capable of getting local
system information and running or deleting local files [17].



6 EURASIP Journal on Wireless Communications and Networking

3. Botnet Attacks

Botnets can serve both legitimate and illegitimate purposes
[6]. One legitimate purpose is to support the operations
of IRC channels using administrative privileges on specific
individuals. Nevertheless, such goals do not meet the vast
number of bots that we have seen. Based on the wealth
of data logged in Honeypots [9], the possibilities to use
botnets for criminally motivated or for destructive goals can
be categorized as follows.

3.1. DDoS Attacks. Botnets are often used for DDoS attacks
[9], which can disable the network services of victim system
by consuming its bandwidth. For instance, a perpetrator may
order the botnet to connect a victim’s IRC channel at first,
and then this target can be flooded by thousands of service
requests from the botnet. In this kind of DDoS attack, the
victim IRC network is taken down. Evidence reveals that
most commonly implemented by botnets are TCP SYN and
UDP flooding attacks [31].

General countermeasure against DDoS attacks requires:
(1) controlling a large number of compromised machines;
(2) disabling the remote control mechanism [31]. However,
more efficient ways are still needed to avoid this kind
of attack. Freiling et al. [31] have presented an approach
to prevent DDoS attack via exploring the hiding bots in
Honeypots.

3.2. Spamming and Spreading Malware. About 70% to 90%
of the world’s spam is caused by botnets nowadays, which has
most experienced in the Internet security industry concerned
[32, 33]. Study report indicates that, once the SOCKS v4/v5
proxy (TCP/IP RFC 1928) on compromised hosts is opened
by some bots, those machines may be used for nefarious
tasks, for example, spamming. Besides, some bots are able
to gather email addresses by some particular functions [9].
Therefore, attackers can use such a botnet to send massive
amounts of spam [34].

Researchers in [35] have proposed a distributed con-
tent independent spam classification system, called Trinity,
against spamming from botnets. The designer assumes that
the spamming bots will send a mass of e-mails within a short
time. Hence, any letter from such address can be a spam. It is
a little bit unexpected that we do not know the effectiveness
of Trinity since it is still under experiment.

In order to discover the aggregate behaviors of spamming
botnet and benefit its detection in the future, Xie et al.
[36] have designed a spam signature generation framework
named AutoRE. They also found several characteristics of
spamming botnet: (1) spammer often appends some random
and legitimate URLs into the letter to evade detection [36];
(2) botnet IP addresses are usually distributed over many
ASes (Autonomous Systems), with only a few participating
machines in each AS on average [36]; (3) despite that the
contents of spam are different, their recipients’ addresses
may be similar [36]. How to use these features to capture
the botnets and avoid spamming is worth to research in the
future.

Similarly, botnets can be used to spread malware too [9].
For instance, a botnet can launch Witty worm to attack ICQ
protocol since the victims’ system may have not activated
Internet Security Systems (ISS) services [9].

3.3. Information Leakage. Because some bots may sniff not
only the traffic passing by the compromised machines but
also the command data within the victims, perpetrators can
retrieve sensitive information like usernames and passwords
from botnets easily [9]. Evidences indicate that, botnets are
becoming more sophisticated at quickly scanning in the host
for significant corporate and financial data [32]. Since the
bots rarely affect the performance of the running infected
systems, they are often out of the surveillance area and hard
to be caught. Keylogging is the very solution to the inner
attack [9, 16]. Such kind of bots listens for keyboard activities
and then reports to its master the useful information after
filtering the meaningless inputs. This enables the attacker to
steal thousands of private information and credential data
[16].

3.4. Click Fraud. With the help of botnet, perpetrators
are able to install advertisement add-ons and browser
helper objects (BHOs) for business purpose [9]. Just like
Google’s AdSense program, for the sake of obtaining higher
click-through rate (CTR), perpetrators may use botnets to
periodically click on specific hyperlinks and thus promote
the CTR artificially [9]. This is also effective to online polls
or games [9]. Because each victim’s host owns a unique IP
address scattered across the globe, every single click will be
regarded as a valid action from a legitimate person.

3.5. Identity Fraud. Identity Fraud, also called as Identity
Theft, is a fast growing crime on the Internet [9]. Phishing
mail is a typical case. It usually includes legitimate-like URLs
and asks the receiver to submit personal or confidential
information. Such mails can be generated and sent by
botnets through spamming mechanisms [9]. In a further
step, botnets also can set up several fake websites pretending
to be an official business sites to harvest victims’ information.
Once a fake site is closed by its owner, another one can pop
up, until you shut down the computer.

4. Detection and Tracing

By now, several different approaches of identifying and
tracing back botnets have been proposed or attempted. First
and the most generally, the use of Honeypots, where a
subnet pretends to be compromised by a Trojan, but actually
observing the behavior of attackers, enables the controlling
hosts to be identified [22]. In a relevant case, Freiling et al.
[31] have introduced a feasible way to detect certain types
of DDoS attacks lunched by the botnet. To begin with, use
honeypot and active responders to collect bot binaries. Then,
pretend to join the botnet as a compromised machine by
running bots on the honeypot and allowing them to access
the IRC server. At the end, the botnet is infiltrated by a “silent
drone” for information collecting, which may be useful



EURASIP Journal on Wireless Communications and Networking 7

in botnet dismantling. Another and also commonly used
method is using the information form insiders to track an
IRC-based botnet [11]. The third but not the least prevalent
approach to detect botnets is probing DNS caches on the
network to resolve the IP addresses of the destination servers
[11].

4.1. Honeypot and Honeynet. Honeypots are well-known by
their strong ability to detect security threats, collect mal-
wares, and to understand the behaviors and motivations of
perpetrators. Honeynet, for monitoring a large-scale diverse
network, consists of more than one honeypot on a network.
Most of researchers focus on Linux-based honeynet, due to
the obvious reason that, compared to any other platform,
more freely honeynet tools are available on Linux [6]. As
a result, only few tools support the honeypots deployment
on Windows and intruders start to proactively dismantle the
honeypot.

Some scholars aim at the design of a reactive firewall or
related means to prevent multiple compromises of honeypots
[6]. While a compromised port is detected by such a
firewall, the inbound attacks on it can be blocked [6]. This
operation should be carried on covertly to avoid raising
suspicions of the attacker. Evidence shows that operating
less covertly is needed on protection of honeypots against
multiple compromises by worms, since worms are used to
detect its presence [6]. Because many intruders download
toolkits in a victim immediate aftermath, corresponding
traffic should be blocked only selectively. Such toolkits are
significant evidences for future analysis. Hence, to some
extent, attackers’ access to honeypots could not be prevented
very well [6].

As honeypots have become more and more popular in
monitoring and defense systems, intruders begin to seek a
way to avoid honeypot traps [37]. There are some feasible
techniques to detect honeypots. For instance, to detect
VMware or other emulated virtual machines [38, 39], or,
to detect the responses of program’s faulty in honeypot
[40]. In [41], Bethencourt et al. have successfully identified
honeypots using intelligent probing according to public
report statistics. In addition, Krawetz [42] have presented a
commercial spamming tool capable of anti-honeypot func-
tion, called “Send-Safe’s Honeypot Hunter.” By checking the
reply form remote proxy, spammer is able to detect honeypot
open proxies [42]. However, this tool cannot effectively
detect others except open proxy honeypot. Recently, Zou
and Cunninqham [37] have proposed another methodology
for honeypot detection based on independent software and
hardware. In their paper, they also have introduced an
approach to effectively locate and remove infected honeypots
using a P2P structured botnet [37]. All of the above evidences
indicate that, future research is needed in case that a botnet
becomes invisible to honeypot.

4.2. IRC-based Detection. IRC-based botnet is wildly studied
and therefore several characteristics have been discovered for
detection so far. One of the easy ways to detect this kind
of botnets is to sniff traffic on common IRC ports (TCP

port 6667), and then check whether the payloads march
the strings in the knowledge database [22]. Nevertheless,
botnets can use random ports to communicate. Therefore,
another approach looking for behavioral characteristics of
bots comes up. Racine [43] found IRC-based bots were
often idle and only responded upon receiving a specific
instruction. Thus, the connections with such features can be
marked as potential enemies. Nevertheless, it still has a high
false positive rate in the result.

There are also other methodologies existing for IRC-
based botnet detection. Barford and Yegneswaran [17] pro-
posed some approaches based on the source code analysis.
Rajab et al. [11] introduced a modified IRC client called IRC
tracker, which was able to connect the IRC sever and reply
the queries automatically. Given a template and relevant
fingerprint, the IRC tracker could instantiate a new IRC
session to the IRC server [11]. In case the bot master could
find the real identity of the tracker, it appeared as a powerful
and responsive bot on the Internet and run every malicious
command, including the responses to the attacker [11]. We
will introduce some detection methods against IRC-based
botnets below.

4.2.1. Detection Based on Traffic Analysis. Signature technol-
ogy is often used in anomaly detection. The basic idea is to
extract feature information on the packets from the traffic
and march the patterns registered in the knowledge base of
existing bots. Apparently, it is easy to carry on by simply
comparing every byte in the packet, but it also goes with
several drawbacks [44]. Firstly, it is unable to identify the
undefined bots [44]. Second, it should always update the
knowledge base with new signatures, which enhances the
management cost and reduces the performance [44]. Third,
new bots may launch attacks before the knowledge base are
patched [44].

Based on the features of IRC, some other techniques to
detect botnets come up. Basically, two kinds of actions are
involved in a normal IRC communication. One is interactive
commands and another is messages exchanging [44]. If we
can identify the IRC operation with a specified program, it
is possible to detect a botnet attack [44]. For instance, if the
private information is copied to other places by some IRC
commands, we claim that the system is under an attack since
a normal chatting behavior will never do that [44]. However,
the shortcomings also exist. On the one hand, IRC port
number may be changed by attackers. On the other hand, the
traffic may be encrypted or be concealed by network noises
[21]. Any situation will make the bots invisible.

In [44], authors observed the real traffic on IRC com-
munication ports ranging from 6666 to 6669. They found
some IRC clients repeated sending login information while
the server refused their connections [44]. Based on the
experiment result, they claimed that bots would repeat these
actions at certain intervals after refused by the IRC server,
and those time intervals are different [44]. However, they
did not consider a real IRC-based botnet attack into their
experiment. It is a possible future work to extend their
achievements.



8 EURASIP Journal on Wireless Communications and Networking

In [33], Sroufe et al. proposed a different method
for botnet detection. Their approach can efficiently and
automatically identify spam or bots. The main idea is to
extract the shape of the Email (lines and the character count
of each line) by applying a Gaussian kernel density estimator
[33]. Emails with similar shape are suspected. However,
authors did not show the way to detect botnet by using this
method. It may be another future work worth to study.

4.2.2. Detection Based on Anomaly Activities. In [21], authors
proposed an algorithm for anomaly-based botnet detection.
It combined IRC mesh features with TCP-based anomaly
detection module. It first observed and recorded a large
number of TCP packets with respect to IRC hosts. Based
on the ratio computed by the total amount of TCP control
packets (e.g., SYN, SYNACK, FIN, and RESETS) over total
number of TCP packets, it is able to detect some anomaly
activities [21]. They called this ratio as the TCP work weight
and claimed that high value implied a potential attack by a
scanner or worm [21]. However, this mechanism may not
work if the IRC commands have been encoded, as discussed
in [21].

4.3. DNS Tracking. Since bots usually send DNS queries
in order to access the C2 servers, if we can intercept their
domain names, the botnet traffic is able to be captured
by blacklisting the domain names [45, 46]. Actually, it
also provides an important secondary avenue to take down
botnets by disabling their propagation capability [11].

Choi et al. [45] have discussed the features of botnet
DNS. According to their analysis, botnets’ DNS queries can
be easily distinguished from legitimate ones [45]. First of
all, only bots will send DNS queries to the domain of C2
servers, a legitimate one never do this [45]. Secondly, botnet’s
members act and migrate together simultaneously, as well as
their DNS queries [45]. Whereas the legitimate one occurs
continuously, varying from botnet [45]. Third, legitimate
hosts will not use DDNS very often while botnet usually
use DDNS for C2 servers [45]. Based on the above features,
they developed an algorithm to identify botnet DNS queries
[45]. The main idea is to compute the similarity for group
activities and then distinguish the botnet from them based
on the similarity value. The similarity value is defined as
0.5 (C/A+C/B), where A and B stand for the sizes of two
requested IP lists which have some common IP addresses
and the same domain name, and C stands for the size of
duplicated IP addresses [45]. If the value approximated zero,
such common domain will be suspected [45].

There are also some other approaches. Dagon [46]
presented a method of examining the query rates of DDNS
domain. Abnormally high rates or temporally concentrated
were suspected, since the attackers changed their C2 servers
quite often [47]. They utilized both Mahalanobis distance
and Chebyshev’s inequality to quantify how anomalous the
rate is [47]. Schonewille and van Helmond [48] found
that when C2 servers had been taken down, DDNS would
often response name error. Hosts who repeatedly did such
queries could be infected and thus to be suspected [48].

In [47], authors evaluated the above two methods through
experiments on the real world. They claimed that, Dagon’s
approach was not as effective since it misclassified some C2
server domains with short TTL, while Schonewille’s method
was comparatively effective due to the fact that the suspicious
name came from independent individuals [47].

In [49], Hu et al. proposed a botnet detection system
called RB-Seeker (Redirection Botnet Seeker). It is able to
automatically detect botnets in any structure. RB-Seeker
first gathers information about bots redirection activities
(e.g., temporal and spatial features) from two subsystems.
Then it utilizes the statistical methodology and DNS query
probing technique to distinguish the malicious domain from
legitimate ones. Experiment results show that RB-Seeker is
an efficient tool to detect both “aggressive” and “stealthy”
botnets.

5. Preventive Measures

It takes only a couple of hours for conventional worms to
circle the globe since its release from a single host. If worms
using botnet appear from multiple hosts simultaneously,
they are able to infect the majority of vulnerable hosts
worldwide in minutes [7]. Some botnets have been discussed
in previous sections. Nevertheless, there are still plenty of
them that are unknown to us. We also discuss a topic of how
to minimize the risk caused by botnets in the future in this
section.

5.1. Countermeasures on Botnet Attacks. Unfortunately, few
solutions have been in existence for a host to against a
botnet DoS attack so far [3]. Albeit it is hard to find the
patterns of malicious hosts, network administrators can still
identify botnet attacks based on passive operating system
fingerprinting extracted from the latest firewall equipment
[3]. The lifecycle of botnets tells us that bots often utilize
free DNS hosting services to redirect a sub-domain to an
inaccessible IP address. Thus, removing those services may
take down such a botnet [3]. At present, many security
companies focus on offerings to stop botnets [3]. Some of
them protect consumers, whereas most others are designed
for ISPs or enterprises [3]. The individual products try to
identify bot behavior by anti-virus software. The enterprise
products have no better solutions than nullrouting DNS
entries or shutting down the IRC and other main servers after
a botnet attack identified [3].

5.2. Countermeasures for Public. Personal or corporation
security inevitably depends on the communication partners
[7]. Building a good relationship with those partners is
essential. Firstly, one should continuously request the service
supplier for security packages, such as firewall, anti-virus
tool-kit, intrusion detection utility, and so forth. [7]. Once
something goes wrong, there should be a corresponding
contact number to call [7]. Secondly, one should also pay
much attention on network traffic and report it to ISP
if there is a DDoS attack. ISP can help blocking those
malicious IP addresses [7]. Thirdly, it is better to establish



EURASIP Journal on Wireless Communications and Networking 9

Table 2: Rules of prevention by home users [18].

Type Strategies

Personal Habits
Attention while downloading

Avoid to install useless things

Read carefully before you click

Routine
Use anti-virus/trojan utilities

Update system frequently

Shutdown PC when you leave

Optional Operations
Back-up all systems regularly

Keep all software up-to-date

Deploy personal firewall

accountability on its system, together with a law enforcement
authority [7]. More specifically, scholars and industries have
proposed some strategies for both home users and system
administrators, to prevent, detect and respond botnet attacks
[16, 18]. Here we summarize their suggestions.

5.2.1. Home Users. To prevent attacks from a botnet, home
users can follow the rules described in Table 2. They are
classified into three categories: (1) Personal Habits, (2)
Routine, and (3) Optional Operations. As personal habits,
people should pay attention when downloading, especially
for those programs coming from unscrupulous sites. Besides,
try to avoid installing useless things on personal computer,
which will minimize the possibility of bots infection. If
necessary, read the License Agreement and the notes carefully
before click the button on the web site. As a routine, use anti-
virus software and anti-trojan utilities while system is on.
Scan and update system regularly, especially for Windows.
When leaving the PC, shutdown the system or it may be
remotely controlled by hackers. As the optional operations,
home users are recommended to backup system regularly, to
keep all software up-to-date and to deploy personal firewall
by all means. By doing so, home PCs are shielded from unau-
thorized accesses, and thus bots cannot compromise them.

To detect an abnormal behavior, taking Windows oper-
ating system as an instance, a home user can check the IRC
port range from 6000 to 7000 (typically 6667) by command
“C:\Windows\netstat-an” [16, 18]. The result can reveal
the connection of current IRC client. However, bots may
use some other TCP ports [18]. If unusual behavior occurs
on a home PC, such as slow network response, unknown
ports being used, and something like that, there is possibly
a bot attack [16, 18]. Also, home users can use anti-virus
software or online services to detect attacks [16, 18]. Once
the computer has been compromised, there are strategies
to recover it. The following procedure (Figure 5) is a good
example for home users.

5.2.2. System Administrator. Similarly, there are correspond-
ing rules for system administrators to prevent, detect, and
respond botnet attacks [16, 18]. For a prevention method,
administrators should follow vendor guidelines for updating
the system and applications [18]. Also, keep informed of
latest vulnerabilities and use access control and log files to

Disconnect all infected hosts from the network

Update antivirus software with latest patches
downloaded from another PC 

Deploy antitrojan tool if antivirus software does not work

Legal protection to be taken if private information leak out

Precautions to be taken if secure data is stored on PC

If unresolved, contact technical support personal for help

Figure 5: Home users’ response to botnet attacks [18].

Table 3: Rules of detection by system administrators [18].

Rules Notes

Monitor logs regularly Analyze the internet traffic for
anomalies

Use network packet sniffer Identify the malicious traffic
in intranet

Isolate the malicious subnet Verify IRC activity on host

Scan individual machine They may contain malware

achieve accountability [18]. As illustrated in Table 3, the
following measures can help the system administrator to
minimize the possibilities of botnet attacking.

Once an attack is detected, a system administrator
should isolate those compromised hosts and notify the home
users [16]. Then preserve the data on those infected hosts
including the log files [16]. Besides, identify the number of
victims via sniffer tools [16]. Finally, report the infection to
security consultant [16].

6. Conclusion and Future Challenges

To better understand the botnet and stop its attack eventu-
ally, we provide a survey on existing research on botnets. The
survey first discussed botnet formation and exploitation, the
lifecycle, and two typical topologies. Aiming at the IRC-based
and P2P-based botnet, we give a tutorial of current research
on their attacks and countermeasures.

According to the discussion in Section 2, we propose
several ideas on different topologies as follows. For IRC-
based botnets, the thorny problem is that we cannot get
the source code of most of bots. Hence, in-depth analysis
at networking level and system level for bots’ behaviors are
hardly carried out. For P2P-based botnets, the following
practical challenges should be further considered: (1) main-
taining the rest of bots after some have been taken down by
defenders; (2) hiding the botnet topology while some bots are
captured by defenders; (3) managing the botnet more easily;
(4) changing the traffic patterns more often and making it
harder for detection.



10 EURASIP Journal on Wireless Communications and Networking

Detecting and tracking compromised hosts in a botnet
will continue to be a challenging task. Traffic fingerprinting is
useful for identifying botnets. Nevertheless, just like previous
signature technologies discussed in Section 3, its drawbacks
are obvious. We need an up-to-date knowledge base for all
released bots in the world, which seems to be an impossible
mission. Anomaly detection is another feasible approach.
However, when infected hosts do not behave as unusual,
it may be unable to detect such a potential threat. Since
current detecting technology depends on the happened
attacking event, no guarantee for us to find every possible
compromised hosts. One interesting issue about anomaly
detection is the time efficiency. If an attack occurs and we
can capture the anomaly in the first place and fix the relevant
problems before it is used for malicious purposes, we say this
anomaly detection is time efficient. We need to focus on its
time efficiency in the future work.

In wireless context, especially for an ad hoc network,
there is not much related research conducted on either
attacking or defending. There are lots of open issues: (1)
How to find the shortest route to attack a target; (2) How
to prevent the compromised hosts from being detected in
the wireless network; (3) How to propagate the bots in the
wireless network, especially before some compromised hosts
become off line.

There are also some other interesting open issues that
need to be considered. To the best of our knowledge, DDoS
attack derived from botnets cannot be avoided. Even if the
attacking has been detected, there is no effective way to trace
back or fight against it. Instead, one can only shut down the
compromised hosts or disconnect with the network, waiting
for further command such as scanning virus or reinstalling
the operating system. As a matter of fact, what we need
indeed is to avoid the propagation of bots in the first place.
Perhaps the only effective approach to eliminate botnets is
to deploy new protocols on routers worldwide. It is really
a huge and beyond reality project. Then, why not consider
installing them on a local gateway? If the gateway could
block the communication of bots between several domains,
the attacker could not easily manage the compromised hosts
worldwide. In the meantime, the gateway could give us
information about where the malicious command came
from. Based on the available evidence over the network, it
would be possible to trace back the initial attack source.
Nevertheless, it is very difficult to implement such an idea
due to the following reasons: (1) It is hard to distinguish
the malicious packages from the regular traffic flow; (2)
Cooperating among domains is not very easy, and sometimes
even gateways can be compromised; (3) How to trace the
potential attack and who should be noticed for further
analysis need to be studied.

Acknowledgment

We would like to thank the editor and anonymous reviewers
for their useful comments on earlier versions of this paper.
This work was supported in part by the National Sci-
ence Foundation (NSF) under grants CNS-0716211, CNS-
0737325, and CCF-0829827.

References

[1] K. Ono, I. Kawaishi, and T. Kamon, “Trend of botnet
activities,” in Proceedings of the 41st Annual IEEE Carnahan
Conference on Security Technology (ICCST ’07), pp. 243–249,
Ottawa, Canada, October 2007.

[2] Wikipedia, “Internet bot,” http://en.wikipedia.org/wiki/Inter-
net bot.

[3] Wikipedia, “Botnet,” http://en.wikipedia.org/wiki/Botnet.

[4] B. Thuraisingham, “Data mining for security applications:
mining concept-drifting data streams to detect peer to peer
botnet traffic,” in Proceedings of the IEEE International Confer-
ence on Intelligence and Security Informatics (ISI ’08), Taipei,
Taiwan, June 2008.

[5] C. Mazzariello, “IRC traffic analysis for botnet detection,” in
Proceedings of the 4th International Symposium on Information
Assurance and Security (IAS ’08), pp. 318–323, Napoli, Italy,
September 2008.

[6] B. McCarty, “Botnets: big and bigger,” IEEE Security and
Privacy, vol. 1, no. 4, pp. 87–90, 2003.

[7] G. P. Schaffer, “Worms and viruses and botnets, oh my!:
rational responses to emerging internet threats,” IEEE Security
and Privacy, vol. 4, no. 3, pp. 52–58, 2006.

[8] J. Mirkovic, G. Prier, and P. Reiher, “Attacking DDoS at
the source,” in Proceedings of the 10th IEEE International
Conference on Network Protocols (ICNP ’02), pp. 312–321,
Paris, France, November 2002.

[9] P. Bacher, T. Holz, M. Kotter, and G. Wicherski, “Know your
Enemy: Tracking Botnets,” http://www.honeynet.org/papers/
bots.

[10] T. Holz, S. Marechal, and F. Raynal, “New threats and attacks
on the world wide web,” IEEE Security and Privacy, vol. 4, no.
2, pp. 72–75, 2006.

[11] M. Abu Rajab, J. Zarfoss, F. Monrose, and A. Terzis, “A multi-
faceted approach to understanding the botnet phenomenon,”
in Proceedings of the 6th ACM SIGCOMM Internet Measure-
ment Conference (IMC ’06), pp. 41–52, Rio de Janeriro, Brazil,
October 2006.

[12] E. Levy, “The making of a spam zombie army: dissecting the
sobig worms,” IEEE Security and Privacy, vol. 1, no. 4, pp. 58–
59, 2003.

[13] D. Cook, J. Hartnett, K. Manderson, and J. Scanlan, “Catching
spam before it arrives: domain specific dynamic blacklists,” in
Proceedings of the Australasian Workshops on Grid Computing
and E-Research, pp. 193–202, Hobart, Australia, January 2006.

[14] J. Jung and E. Sit, “An empirical study of spam traffic and
the use of DNS black lists,” in Proceedings of the 4th ACM
SIGCOMM Internet Measurement Conference (IMC ’04), pp.
370–378, Taormina, Italy, October 2004.

[15] A. Ramachandran, N. Feamster, and D. Dagon, “Revealing
botnet membership using DNSBL counter-intelligence,” in
Proceedings of the 2nd Conference on Steps to Reducing
Unwanted Traffic on the Internet Workshop (SRUTI ’06), vol.
2, p. 8, San Jose, Calif, USA, 2006.

[16] J. Govil, “Examining the criminology of bot zoo,” in Pro-
ceedings of the 6th International Conference on Information,
Communications and Signal Processing (ICICS ’07), pp. 1–6,
Singapore, December 2007.

[17] P. Barford and V. Yegneswaran, “An inside look at botnets,”
in Proceedings of the ARO-DHS Special Workshop on Malware
Detection, Advances in Information Security, Springer, 2006.



EURASIP Journal on Wireless Communications and Networking 11

[18] R. Puri, “Bots and botnets: an overview,” Tech. Rep., SANS
Institute, 2003.

[19] W. T. Strayer, R. Walsh, C. Livadas, and D. Lapsley, “Detecting
botnets with tight command and control,” in Proceedings of
the 31st Annual IEEE Conference on Local Computer Networks
(LCN ’06), pp. 195–202, Tampa, Fla, USA, November 2006.

[20] M. Akiyama, T. Kawamoto, M. Shimamura, T. Yokoyama,
Y. Kadobayashi, and S. Yamaguchi, “A proposal of metrics
for botnet detection based on its cooperative behavior,” in
Proceedings of the International Symposium on Applications and
the Internet Workshops, p. 82, Washington, DC, USA, January
2007.

[21] J. R. Binkley and S. Singh, “An algorithm for anomaly-based
botnet detection,” in Proceedings of the 2nd Conference on Steps
to Reducing Unwanted Traffic on the Internet Workshop (SRUTI
’06), p. 7, San Jose, Calif, USA, 2006.

[22] E. Cooke, F. Jahanian, and D. Mcpherson, “The zombie
roundup: understanding, detecting, and disrupting botnets,”
in Proceedings of the Steps to Reducing Unwanted Traffic on the
Internet Workshop (SRUTI ’05), p. 6, Cambridge, Mass, USA,
2005.

[23] C. Livadas, R. Walsh, D. Lapsley, and W. T. Strayer, “Using
machine learning techniques to identify botnet traffic,” in
Proceedings of the 31st Annual IEEE Conference on Local
Computer Networks (LCN ’06), pp. 967–974, Tampa, Fla, USA,
November 2006.

[24] T. Holz, M. Steiner, F. Dahl, E. W. Biersack, and F. Freiling,
“Measurement and mitigation of peer-to-peer-based botnets:
a case study on storm worm,” in Proceedings of the 1st Usenix
Workshop on Large-Scale Exploits and Emergent Threats, pp. 1–
9, San Francisco, Calif, USA, April 2008.

[25] P. Wang, S. Sparks, and C. C. Zou, “An advanced hybrid peer-
to-peer botnet,” in Proceedings of the 1st Workshop on Hot
Topics in Understanding Botnets, p. 2, Cambridge, Mass, USA,
July 2008.

[26] R. Lemos, “Bot software looks to improve peerage,”
http://www.securityfocus.com/news/11390.

[27] I. Arce and E. levy, “An analysis of the slapper worm,” IEEE
Security & Privacy Magazine, vol. 1, no. 1, pp. 82–87, 2003.

[28] J. Stewart, “Sinit P2P Trojan analysis,” http://www.secure-
works.com/research/threats/sinit/.

[29] J. Stewart, “Phatbot Trojan analysis,” http://www.secureworks
.com/research/threats/phatbot/?threat=phatbot.

[30] C. Langin, H. Zhou, and S. Rahimi, “A model to use denied
Internet traffic to indirectly discover internal network security
problems,” in Proceedings of the IEEE International Perfor-
mance, Computing, and Communications Conference (IPCCC
’08), pp. 486–490, Austin, Tex, USA, December 2008.

[31] F. C. Freiling, T. Holz, and G. Wicherski, “Botnet tracking:
exploring a root-cause methodology to prevent distributed
denial-of-service attacks,” in Proceedings of the 10th European
Symposium on Research in Computer Security (ESORICS ’05),
vol. 3679 of Lecture Notes in Computer Science, pp. 319–335,
Springer, Milan, Italy, September 2005.

[32] K. Pappas, “Back to basics to fight botnets,” Communications
News, vol. 45, no. 5, p. 12, 2008.

[33] P. Sroufe, S. Phithakkitnukoon, R. Dantu, and J. Cangussu,
“Email shape analysis for spam botnet detection,” in Pro-
ceedings of the 6th IEEE Consumer Communications and
Networking Conference (CCNC ’09), pp. 1–2, Las Vegas, Nev,
USA, January 2009.

[34] K. Chiang and L. Lloyd, “A case study of the restock rootkit and
spam bot,” in Proceedings of the 1st Workshop on Hot Topics in
Understanding Botnets, p. 10, Cambridge, Mass, USA, 2007.

[35] A. Brodsky and D. Brodsky, “A distributed content inde-
pendent method for spam detection,” in Proceedings of the
1st Workshop on Hot Topics in Understanding Botnets, p. 3,
Cambridge, Mass, USA, 2007.

[36] Y. Xie, F. Yu, K. Achan, R. Panigrahy, G. Hulten, and I.
Osipkov, “Spamming botnets: signatures and characteristics,”
in Proceedings of the ACM SIGCOMM Conference on Data
Communication (SIGCOMM ’08), vol. 38, pp. 171–182, Seat-
tle, Wash, USA, August 2008.

[37] C. C. Zou and R. Cunningham, “Honeypot-aware advanced
botnet construction and maintenance,” in Proceedings of the
International Conference on Dependable Systems and Networks
(DSN ’06), pp. 199–208, Philadelphia, Pa, USA, June 2006.

[38] J. Corey, “Advanced honey pot identification and exploita-
tion,” 2004, http://www.ouah.org/p63-0x09.txt.

[39] K. Seifried, “Honeypotting with VMware basics,” 2002,
http://www.seifried.org/security/index.html.

[40] Honeyd security advisory 2004–001, “Remote detection via
simple probe packet,” 2004, http://www.honeyd.org/adv.2004-
01.asc.

[41] J. Bethencourt, J. Franklin, and M. Vernon, “Mapping internet
sensors with probe response attacks,” in Proceedings of the
14th Conference on USENIX Security Symposium, pp. 193–208,
Baltimore, Md, USA, August 2005.

[42] N. Krawetz, “Anti-Honeypot technology,” IEEE Security and
Privacy, vol. 2, no. 1, pp. 76–79, 2004.

[43] S. Racine, Analysis of internet relay chat usage by DDoS zombies,
M.S. thesis, Swiss Federal Institute of Technology, Zurich,
Switzerland, April 2004.

[44] Y. Kugisaki, Y. Kasahara, Y. Hori, and K. Sakurai, “Bot
detection based on traffic analysis,” in Proceedings of the
International Conference on Intelligent Pervasive Computing
(IPC ’07), pp. 303–306, Jeju Island, South Korea, October
2007.

[45] H. Choi, H. Lee, H. Lee, and H. Kim, “Botnet detection by
monitoring group activities in DNS traffic,” in Proceedings
of the 7th IEEE International Conference on Computer and
Information Technology (CIT ’07), pp. 715–720, Fukushima,
Japan, October 2007.

[46] D. Dagon, “Botnet detection and response, the network
is the infection,” 2005, http://www.caida.org/workshops/dns-
oarc/200507/slides/oarc0507-Dagon.pdf.

[47] R. Villamarin-Salomon and J. C. Brustoloni, “Identifying
botnets using anomaly detection techniques applied to DNS
traffic,” in Proceedings of the 5th IEEE Consumer Communica-
tions and Networking Conference, pp. 476–481, Las Vegas, Nev,
USA, January 2008.

[48] A. Schonewille and D. J. van Helmond, The domain name
service as an IDS, M.S. thesis, University of Amsterdam,
Amsterdam, The Netherlands, February 2006.

[49] X. Hu, M. Knyz, and K. G. Shin, “RB-Seeker: auto-detection of
redirection botnets,” in Proceedings of 16th Annual Network &
Distributed System Security Symposium (NDSS ’09), February
2009.



Photograph © Turisme de Barcelona / J. Trullàs

Preliminary call for papers

The 2011 European Signal Processing Conference (EUSIPCO 2011) is the
nineteenth in a series of conferences promoted by the European Association for
Signal Processing (EURASIP, www.eurasip.org). This year edition will take place
in Barcelona, capital city of Catalonia (Spain), and will be jointly organized by the
Centre Tecnològic de Telecomunicacions de Catalunya (CTTC) and the
Universitat Politècnica de Catalunya (UPC).
EUSIPCO 2011 will focus on key aspects of signal processing theory and

li ti li t d b l A t f b i i ill b b d lit

Organizing Committee

Honorary Chair
Miguel A. Lagunas (CTTC)

General Chair
Ana I. Pérez Neira (UPC)

General Vice Chair
Carles Antón Haro (CTTC)

Technical Program Chair
Xavier Mestre (CTTC)

Technical Program Co Chairsapplications as listed below. Acceptance of submissions will be based on quality,
relevance and originality. Accepted papers will be published in the EUSIPCO
proceedings and presented during the conference. Paper submissions, proposals
for tutorials and proposals for special sessions are invited in, but not limited to,
the following areas of interest.

Areas of Interest

• Audio and electro acoustics.
• Design, implementation, and applications of signal processing systems.

l d l d d

Technical Program Co Chairs
Javier Hernando (UPC)
Montserrat Pardàs (UPC)

Plenary Talks
Ferran Marqués (UPC)
Yonina Eldar (Technion)

Special Sessions
Ignacio Santamaría (Unversidad
de Cantabria)
Mats Bengtsson (KTH)

Finances
Montserrat Nájar (UPC)• Multimedia signal processing and coding.

• Image and multidimensional signal processing.
• Signal detection and estimation.
• Sensor array and multi channel signal processing.
• Sensor fusion in networked systems.
• Signal processing for communications.
• Medical imaging and image analysis.
• Non stationary, non linear and non Gaussian signal processing.

Submissions

Montserrat Nájar (UPC)

Tutorials
Daniel P. Palomar
(Hong Kong UST)
Beatrice Pesquet Popescu (ENST)

Publicity
Stephan Pfletschinger (CTTC)
Mònica Navarro (CTTC)

Publications
Antonio Pascual (UPC)
Carles Fernández (CTTC)

I d i l Li i & E hibiSubmissions

Procedures to submit a paper and proposals for special sessions and tutorials will
be detailed at www.eusipco2011.org. Submitted papers must be camera ready, no
more than 5 pages long, and conforming to the standard specified on the
EUSIPCO 2011 web site. First authors who are registered students can participate
in the best student paper competition.

Important Deadlines:

P l f i l i 15 D 2010

Industrial Liaison & Exhibits
Angeliki Alexiou
(University of Piraeus)
Albert Sitjà (CTTC)

International Liaison
Ju Liu (Shandong University China)
Jinhong Yuan (UNSW Australia)
Tamas Sziranyi (SZTAKI Hungary)
Rich Stern (CMU USA)
Ricardo L. de Queiroz (UNB Brazil)

Webpage: www.eusipco2011.org

Proposals for special sessions 15 Dec 2010
Proposals for tutorials 18 Feb 2011
Electronic submission of full papers 21 Feb 2011
Notification of acceptance 23 May 2011
Submission of camera ready papers 6 Jun 2011


